Log-sum inequality












1












$begingroup$


Let $(a^n)_{n in mathbb{N}} subset mathbb{R}^k$ be a sequence of vectors with non-negative components and with $sum_{i=1}^k a^n_i=1$ for all $ninmathbb{N}$. Then we have for each $ninmathbb{N}$ by the log-sum inequality:



$sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n} geq left(sum_{i=1}^k a_i^{n+1}right) logdfrac{sum_{i=1}^k a_i^{n+1}}{sum_{i=1}^k a_i^{n}}=0,$



where the equality holds if and only if $a_i^{n+1}/a_i^n$ is constant for any $i=1,...,k$.



Now assume that



$limlimits_{nrightarrow infty}sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n} = 0.$



Can we conclude that $limlimits_{nrightarrow infty} dfrac{a_i^{n+1}}{a_i^n} = 1$? Intuitively yes, but how can this be proven rigorously?



Thanks in advance!










share|cite|improve this question









$endgroup$












  • $begingroup$
    I find your notation $a_i^n$ confusing and keep wanting to see the $n$ as an exponent rather than an index. I would write this as $a_{i, n}$ or $a_{n, i}$.
    $endgroup$
    – marty cohen
    Dec 17 '18 at 18:18
















1












$begingroup$


Let $(a^n)_{n in mathbb{N}} subset mathbb{R}^k$ be a sequence of vectors with non-negative components and with $sum_{i=1}^k a^n_i=1$ for all $ninmathbb{N}$. Then we have for each $ninmathbb{N}$ by the log-sum inequality:



$sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n} geq left(sum_{i=1}^k a_i^{n+1}right) logdfrac{sum_{i=1}^k a_i^{n+1}}{sum_{i=1}^k a_i^{n}}=0,$



where the equality holds if and only if $a_i^{n+1}/a_i^n$ is constant for any $i=1,...,k$.



Now assume that



$limlimits_{nrightarrow infty}sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n} = 0.$



Can we conclude that $limlimits_{nrightarrow infty} dfrac{a_i^{n+1}}{a_i^n} = 1$? Intuitively yes, but how can this be proven rigorously?



Thanks in advance!










share|cite|improve this question









$endgroup$












  • $begingroup$
    I find your notation $a_i^n$ confusing and keep wanting to see the $n$ as an exponent rather than an index. I would write this as $a_{i, n}$ or $a_{n, i}$.
    $endgroup$
    – marty cohen
    Dec 17 '18 at 18:18














1












1








1





$begingroup$


Let $(a^n)_{n in mathbb{N}} subset mathbb{R}^k$ be a sequence of vectors with non-negative components and with $sum_{i=1}^k a^n_i=1$ for all $ninmathbb{N}$. Then we have for each $ninmathbb{N}$ by the log-sum inequality:



$sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n} geq left(sum_{i=1}^k a_i^{n+1}right) logdfrac{sum_{i=1}^k a_i^{n+1}}{sum_{i=1}^k a_i^{n}}=0,$



where the equality holds if and only if $a_i^{n+1}/a_i^n$ is constant for any $i=1,...,k$.



Now assume that



$limlimits_{nrightarrow infty}sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n} = 0.$



Can we conclude that $limlimits_{nrightarrow infty} dfrac{a_i^{n+1}}{a_i^n} = 1$? Intuitively yes, but how can this be proven rigorously?



Thanks in advance!










share|cite|improve this question









$endgroup$




Let $(a^n)_{n in mathbb{N}} subset mathbb{R}^k$ be a sequence of vectors with non-negative components and with $sum_{i=1}^k a^n_i=1$ for all $ninmathbb{N}$. Then we have for each $ninmathbb{N}$ by the log-sum inequality:



$sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n} geq left(sum_{i=1}^k a_i^{n+1}right) logdfrac{sum_{i=1}^k a_i^{n+1}}{sum_{i=1}^k a_i^{n}}=0,$



where the equality holds if and only if $a_i^{n+1}/a_i^n$ is constant for any $i=1,...,k$.



Now assume that



$limlimits_{nrightarrow infty}sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n} = 0.$



Can we conclude that $limlimits_{nrightarrow infty} dfrac{a_i^{n+1}}{a_i^n} = 1$? Intuitively yes, but how can this be proven rigorously?



Thanks in advance!







real-analysis analysis inequality






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 17 '18 at 16:14









Max93Max93

31529




31529












  • $begingroup$
    I find your notation $a_i^n$ confusing and keep wanting to see the $n$ as an exponent rather than an index. I would write this as $a_{i, n}$ or $a_{n, i}$.
    $endgroup$
    – marty cohen
    Dec 17 '18 at 18:18


















  • $begingroup$
    I find your notation $a_i^n$ confusing and keep wanting to see the $n$ as an exponent rather than an index. I would write this as $a_{i, n}$ or $a_{n, i}$.
    $endgroup$
    – marty cohen
    Dec 17 '18 at 18:18
















$begingroup$
I find your notation $a_i^n$ confusing and keep wanting to see the $n$ as an exponent rather than an index. I would write this as $a_{i, n}$ or $a_{n, i}$.
$endgroup$
– marty cohen
Dec 17 '18 at 18:18




$begingroup$
I find your notation $a_i^n$ confusing and keep wanting to see the $n$ as an exponent rather than an index. I would write this as $a_{i, n}$ or $a_{n, i}$.
$endgroup$
– marty cohen
Dec 17 '18 at 18:18










1 Answer
1






active

oldest

votes


















0












$begingroup$

Not necessarily. For instance, put $k=2$ and for each $ninBbb N$ put $a^n_1=frac 1{2^n}$ and $a^n_2=1-frac 1{2^n}$. Then



$$lim_{ntoinfty}sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n}=
lim_{ntoinfty}frac 1{2^{n+1}}logdfrac{frac 1{2^{n+1}}}{frac 1{2^{n}}}+
left(1-frac 1{2^{n+1}}right)logdfrac{1-frac 1{2^{n+1}}}{1-frac 1{2^{n}}}=0,$$



but $$limlimits_{nrightarrow infty} dfrac{a_1^{n+1}}{a_1^n} = frac 12.$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044127%2flog-sum-inequality%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Not necessarily. For instance, put $k=2$ and for each $ninBbb N$ put $a^n_1=frac 1{2^n}$ and $a^n_2=1-frac 1{2^n}$. Then



    $$lim_{ntoinfty}sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n}=
    lim_{ntoinfty}frac 1{2^{n+1}}logdfrac{frac 1{2^{n+1}}}{frac 1{2^{n}}}+
    left(1-frac 1{2^{n+1}}right)logdfrac{1-frac 1{2^{n+1}}}{1-frac 1{2^{n}}}=0,$$



    but $$limlimits_{nrightarrow infty} dfrac{a_1^{n+1}}{a_1^n} = frac 12.$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Not necessarily. For instance, put $k=2$ and for each $ninBbb N$ put $a^n_1=frac 1{2^n}$ and $a^n_2=1-frac 1{2^n}$. Then



      $$lim_{ntoinfty}sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n}=
      lim_{ntoinfty}frac 1{2^{n+1}}logdfrac{frac 1{2^{n+1}}}{frac 1{2^{n}}}+
      left(1-frac 1{2^{n+1}}right)logdfrac{1-frac 1{2^{n+1}}}{1-frac 1{2^{n}}}=0,$$



      but $$limlimits_{nrightarrow infty} dfrac{a_1^{n+1}}{a_1^n} = frac 12.$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Not necessarily. For instance, put $k=2$ and for each $ninBbb N$ put $a^n_1=frac 1{2^n}$ and $a^n_2=1-frac 1{2^n}$. Then



        $$lim_{ntoinfty}sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n}=
        lim_{ntoinfty}frac 1{2^{n+1}}logdfrac{frac 1{2^{n+1}}}{frac 1{2^{n}}}+
        left(1-frac 1{2^{n+1}}right)logdfrac{1-frac 1{2^{n+1}}}{1-frac 1{2^{n}}}=0,$$



        but $$limlimits_{nrightarrow infty} dfrac{a_1^{n+1}}{a_1^n} = frac 12.$$






        share|cite|improve this answer









        $endgroup$



        Not necessarily. For instance, put $k=2$ and for each $ninBbb N$ put $a^n_1=frac 1{2^n}$ and $a^n_2=1-frac 1{2^n}$. Then



        $$lim_{ntoinfty}sum_{i=1}^k a_i^{n+1} logdfrac{a_i^{n+1}}{a_i^n}=
        lim_{ntoinfty}frac 1{2^{n+1}}logdfrac{frac 1{2^{n+1}}}{frac 1{2^{n}}}+
        left(1-frac 1{2^{n+1}}right)logdfrac{1-frac 1{2^{n+1}}}{1-frac 1{2^{n}}}=0,$$



        but $$limlimits_{nrightarrow infty} dfrac{a_1^{n+1}}{a_1^n} = frac 12.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 18 '18 at 18:05









        Alex RavskyAlex Ravsky

        41.4k32282




        41.4k32282






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044127%2flog-sum-inequality%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Quarter-circle Tiles

            build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

            Mont Emei