How to solve the recursive equation $y^{(n+2)} +(n+1)y^{(n+1)} +tfrac{n(n+1)}{2} y^{(n)}=0$











up vote
1
down vote

favorite












I encounter the problem when I try to get the Taylor series of $arctan x$ at $x=1$. It seems that the method for expanding it at $x=0$ does not work anymore (which is obtained by observing that $arctan' x=frac{1}{1+x^2}=sum_{n=0}^infty (-1)^n x^{2n}$, and then integration over the convergence domain).



So I try to compute the derivatives at $x=1$: Note that if we set $y(x)=arctan x$, then
$$y'=frac{1}{1+x^2},quad y''=frac{-2x}{(1+x^2)^2}implies
(1+x^2)y''=-2x y'.$$

By Leibniz rule, taking derivative of order $n$ at both side, we have
$$
y^{(n+2)}(1)+(n+1)y^{(n+1)}(1)+frac{n(n+1)}{2} y^{(n)}(1)=0.
$$

It is easy to show
$$
y(1)=pi/4,quad y'(1)=1/2,quad y''(1)=-1/2,quad y'''(1)=1/2,quad y''''(1)=0.
$$

I don't know how to get a general formula from the above recursive equation, any ideas?



In fact, I am also searching for a general theory about recursive equations, any reference there?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    I encounter the problem when I try to get the Taylor series of $arctan x$ at $x=1$. It seems that the method for expanding it at $x=0$ does not work anymore (which is obtained by observing that $arctan' x=frac{1}{1+x^2}=sum_{n=0}^infty (-1)^n x^{2n}$, and then integration over the convergence domain).



    So I try to compute the derivatives at $x=1$: Note that if we set $y(x)=arctan x$, then
    $$y'=frac{1}{1+x^2},quad y''=frac{-2x}{(1+x^2)^2}implies
    (1+x^2)y''=-2x y'.$$

    By Leibniz rule, taking derivative of order $n$ at both side, we have
    $$
    y^{(n+2)}(1)+(n+1)y^{(n+1)}(1)+frac{n(n+1)}{2} y^{(n)}(1)=0.
    $$

    It is easy to show
    $$
    y(1)=pi/4,quad y'(1)=1/2,quad y''(1)=-1/2,quad y'''(1)=1/2,quad y''''(1)=0.
    $$

    I don't know how to get a general formula from the above recursive equation, any ideas?



    In fact, I am also searching for a general theory about recursive equations, any reference there?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      I encounter the problem when I try to get the Taylor series of $arctan x$ at $x=1$. It seems that the method for expanding it at $x=0$ does not work anymore (which is obtained by observing that $arctan' x=frac{1}{1+x^2}=sum_{n=0}^infty (-1)^n x^{2n}$, and then integration over the convergence domain).



      So I try to compute the derivatives at $x=1$: Note that if we set $y(x)=arctan x$, then
      $$y'=frac{1}{1+x^2},quad y''=frac{-2x}{(1+x^2)^2}implies
      (1+x^2)y''=-2x y'.$$

      By Leibniz rule, taking derivative of order $n$ at both side, we have
      $$
      y^{(n+2)}(1)+(n+1)y^{(n+1)}(1)+frac{n(n+1)}{2} y^{(n)}(1)=0.
      $$

      It is easy to show
      $$
      y(1)=pi/4,quad y'(1)=1/2,quad y''(1)=-1/2,quad y'''(1)=1/2,quad y''''(1)=0.
      $$

      I don't know how to get a general formula from the above recursive equation, any ideas?



      In fact, I am also searching for a general theory about recursive equations, any reference there?










      share|cite|improve this question















      I encounter the problem when I try to get the Taylor series of $arctan x$ at $x=1$. It seems that the method for expanding it at $x=0$ does not work anymore (which is obtained by observing that $arctan' x=frac{1}{1+x^2}=sum_{n=0}^infty (-1)^n x^{2n}$, and then integration over the convergence domain).



      So I try to compute the derivatives at $x=1$: Note that if we set $y(x)=arctan x$, then
      $$y'=frac{1}{1+x^2},quad y''=frac{-2x}{(1+x^2)^2}implies
      (1+x^2)y''=-2x y'.$$

      By Leibniz rule, taking derivative of order $n$ at both side, we have
      $$
      y^{(n+2)}(1)+(n+1)y^{(n+1)}(1)+frac{n(n+1)}{2} y^{(n)}(1)=0.
      $$

      It is easy to show
      $$
      y(1)=pi/4,quad y'(1)=1/2,quad y''(1)=-1/2,quad y'''(1)=1/2,quad y''''(1)=0.
      $$

      I don't know how to get a general formula from the above recursive equation, any ideas?



      In fact, I am also searching for a general theory about recursive equations, any reference there?







      sequences-and-series reference-request taylor-expansion recursion analytic-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 18 at 15:33









      Batominovski

      31.8k23189




      31.8k23189










      asked Nov 18 at 14:32









      van abel

      659523




      659523






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          If you simply want to find the Taylor series about $x=1$ of $text{arctan}(x)$, then you can use $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{1+x^2}=frac{1}{1+(z+1)^2}=frac{1}{2text{i}}left(frac{1}{1-text{i}+z}-frac{1}{1+text{i}+z}right),,$$
          where $z:=x-1$. This gives
          $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{left(1+frac{z}{1-text{i}}right)^{-1}}{1-text{i}}-frac{left(1+frac{z}{1+text{i}}right)^{-1}}{1+text{i}}right),.$$
          Therefore, if $|z|<sqrt{2}$, then
          $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1-text{i}}right)^{k}}{1-text{i}}-frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1+text{i}}right)^{k}}{1+text{i}}right),.$$
          Simplifying this, we have
          $$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,(-1)^k,left(frac{frac1{(1-text{i})^{k+1}}-frac{1}{(1+text{i})^{k+1}}}{2text{i}}right),(x-1)^k$$
          for $xinmathbb{C}$ such that $|x-1|<sqrt{2}$.



          Using $1pmtext{i}=sqrt{2},expleft(pmdfrac{text{i}pi}{4}right)$, we conclude that
          $$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,frac{(-1)^k}{2^{frac{k+1}{2}}},sinleft(frac{(k+1)pi}{4}right),(x-1)^k$$
          for all complex numbers $x$ with $|x-1|<sqrt{2}$.
          Integrating the series above, we have
          $$text{arctan}(x)=frac{pi}{4}+sum_{k=1}^{infty},frac{(-1)^{k-1}}{2^{frac{k}{2}},k},sinleft(frac{kpi}{4}right),(x-1)^k,.$$
          for every $xinmathbb{C}$ such that $|x-1|<sqrt{2}$. In this way, it follows that
          $$y^{(k)}(1)=begin{cases}frac{pi}{4}&text{if }k=0,,\
          frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)&text{if }k=1,2,3,ldots,,
          end{cases}$$

          where $y(x):=text{arctan}(x)$.





          However, if you really want to solve the recursion without the expansion above, then let $a_k:=dfrac{y^{(k)}(1)}{(k-1)!}$ for $k=1,2,3,ldots$. From
          $$y^{(k+2)}(1)+(k+1),y^{(k+1)}(1)+frac{k(k+1)}{2},y^{(k)}(1)=0text{ for }k=1,2,3,ldots,,$$
          we divide both sides by $(k+1)!$ to get
          $$a_{k+2}+a_{k+1}+frac{1}{2},a_k=0text{ for }k=1,2,3,ldots,.$$
          The characteristic polynomial of the recursion above is $lambda^2+lambda+dfrac{1}{2}$, whose roots are $dfrac{-1pmtext{i}}{2}$. Therefore, for $k=1,2,3,ldots$,
          $$a_k=p,left(frac{-1+text{i}}{2}right)^k+q,left(frac{-1-text{i}}{2}right)^k$$
          for some fixed $p,qinmathbb{C}$. Since $a_1=dfrac{1}{2}$ and $a_2=-dfrac{1}{2}$, we get $$p=+frac{text{i}}{2}text{ and }q=-frac{text{i}}{2},,$$
          whence
          $$y^{(k)}(1)=frac{left(frac{-1+text{i}}{2}right)^k-,left(frac{-1-text{i}}{2}right)^k}{2text{i}},(k-1)!=frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)$$
          for $k=1,2,3,ldots$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003605%2fhow-to-solve-the-recursive-equation-yn2-n1yn1-tfracnn12%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            2
            down vote



            accepted










            If you simply want to find the Taylor series about $x=1$ of $text{arctan}(x)$, then you can use $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{1+x^2}=frac{1}{1+(z+1)^2}=frac{1}{2text{i}}left(frac{1}{1-text{i}+z}-frac{1}{1+text{i}+z}right),,$$
            where $z:=x-1$. This gives
            $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{left(1+frac{z}{1-text{i}}right)^{-1}}{1-text{i}}-frac{left(1+frac{z}{1+text{i}}right)^{-1}}{1+text{i}}right),.$$
            Therefore, if $|z|<sqrt{2}$, then
            $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1-text{i}}right)^{k}}{1-text{i}}-frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1+text{i}}right)^{k}}{1+text{i}}right),.$$
            Simplifying this, we have
            $$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,(-1)^k,left(frac{frac1{(1-text{i})^{k+1}}-frac{1}{(1+text{i})^{k+1}}}{2text{i}}right),(x-1)^k$$
            for $xinmathbb{C}$ such that $|x-1|<sqrt{2}$.



            Using $1pmtext{i}=sqrt{2},expleft(pmdfrac{text{i}pi}{4}right)$, we conclude that
            $$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,frac{(-1)^k}{2^{frac{k+1}{2}}},sinleft(frac{(k+1)pi}{4}right),(x-1)^k$$
            for all complex numbers $x$ with $|x-1|<sqrt{2}$.
            Integrating the series above, we have
            $$text{arctan}(x)=frac{pi}{4}+sum_{k=1}^{infty},frac{(-1)^{k-1}}{2^{frac{k}{2}},k},sinleft(frac{kpi}{4}right),(x-1)^k,.$$
            for every $xinmathbb{C}$ such that $|x-1|<sqrt{2}$. In this way, it follows that
            $$y^{(k)}(1)=begin{cases}frac{pi}{4}&text{if }k=0,,\
            frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)&text{if }k=1,2,3,ldots,,
            end{cases}$$

            where $y(x):=text{arctan}(x)$.





            However, if you really want to solve the recursion without the expansion above, then let $a_k:=dfrac{y^{(k)}(1)}{(k-1)!}$ for $k=1,2,3,ldots$. From
            $$y^{(k+2)}(1)+(k+1),y^{(k+1)}(1)+frac{k(k+1)}{2},y^{(k)}(1)=0text{ for }k=1,2,3,ldots,,$$
            we divide both sides by $(k+1)!$ to get
            $$a_{k+2}+a_{k+1}+frac{1}{2},a_k=0text{ for }k=1,2,3,ldots,.$$
            The characteristic polynomial of the recursion above is $lambda^2+lambda+dfrac{1}{2}$, whose roots are $dfrac{-1pmtext{i}}{2}$. Therefore, for $k=1,2,3,ldots$,
            $$a_k=p,left(frac{-1+text{i}}{2}right)^k+q,left(frac{-1-text{i}}{2}right)^k$$
            for some fixed $p,qinmathbb{C}$. Since $a_1=dfrac{1}{2}$ and $a_2=-dfrac{1}{2}$, we get $$p=+frac{text{i}}{2}text{ and }q=-frac{text{i}}{2},,$$
            whence
            $$y^{(k)}(1)=frac{left(frac{-1+text{i}}{2}right)^k-,left(frac{-1-text{i}}{2}right)^k}{2text{i}},(k-1)!=frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)$$
            for $k=1,2,3,ldots$.






            share|cite|improve this answer

























              up vote
              2
              down vote



              accepted










              If you simply want to find the Taylor series about $x=1$ of $text{arctan}(x)$, then you can use $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{1+x^2}=frac{1}{1+(z+1)^2}=frac{1}{2text{i}}left(frac{1}{1-text{i}+z}-frac{1}{1+text{i}+z}right),,$$
              where $z:=x-1$. This gives
              $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{left(1+frac{z}{1-text{i}}right)^{-1}}{1-text{i}}-frac{left(1+frac{z}{1+text{i}}right)^{-1}}{1+text{i}}right),.$$
              Therefore, if $|z|<sqrt{2}$, then
              $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1-text{i}}right)^{k}}{1-text{i}}-frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1+text{i}}right)^{k}}{1+text{i}}right),.$$
              Simplifying this, we have
              $$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,(-1)^k,left(frac{frac1{(1-text{i})^{k+1}}-frac{1}{(1+text{i})^{k+1}}}{2text{i}}right),(x-1)^k$$
              for $xinmathbb{C}$ such that $|x-1|<sqrt{2}$.



              Using $1pmtext{i}=sqrt{2},expleft(pmdfrac{text{i}pi}{4}right)$, we conclude that
              $$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,frac{(-1)^k}{2^{frac{k+1}{2}}},sinleft(frac{(k+1)pi}{4}right),(x-1)^k$$
              for all complex numbers $x$ with $|x-1|<sqrt{2}$.
              Integrating the series above, we have
              $$text{arctan}(x)=frac{pi}{4}+sum_{k=1}^{infty},frac{(-1)^{k-1}}{2^{frac{k}{2}},k},sinleft(frac{kpi}{4}right),(x-1)^k,.$$
              for every $xinmathbb{C}$ such that $|x-1|<sqrt{2}$. In this way, it follows that
              $$y^{(k)}(1)=begin{cases}frac{pi}{4}&text{if }k=0,,\
              frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)&text{if }k=1,2,3,ldots,,
              end{cases}$$

              where $y(x):=text{arctan}(x)$.





              However, if you really want to solve the recursion without the expansion above, then let $a_k:=dfrac{y^{(k)}(1)}{(k-1)!}$ for $k=1,2,3,ldots$. From
              $$y^{(k+2)}(1)+(k+1),y^{(k+1)}(1)+frac{k(k+1)}{2},y^{(k)}(1)=0text{ for }k=1,2,3,ldots,,$$
              we divide both sides by $(k+1)!$ to get
              $$a_{k+2}+a_{k+1}+frac{1}{2},a_k=0text{ for }k=1,2,3,ldots,.$$
              The characteristic polynomial of the recursion above is $lambda^2+lambda+dfrac{1}{2}$, whose roots are $dfrac{-1pmtext{i}}{2}$. Therefore, for $k=1,2,3,ldots$,
              $$a_k=p,left(frac{-1+text{i}}{2}right)^k+q,left(frac{-1-text{i}}{2}right)^k$$
              for some fixed $p,qinmathbb{C}$. Since $a_1=dfrac{1}{2}$ and $a_2=-dfrac{1}{2}$, we get $$p=+frac{text{i}}{2}text{ and }q=-frac{text{i}}{2},,$$
              whence
              $$y^{(k)}(1)=frac{left(frac{-1+text{i}}{2}right)^k-,left(frac{-1-text{i}}{2}right)^k}{2text{i}},(k-1)!=frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)$$
              for $k=1,2,3,ldots$.






              share|cite|improve this answer























                up vote
                2
                down vote



                accepted







                up vote
                2
                down vote



                accepted






                If you simply want to find the Taylor series about $x=1$ of $text{arctan}(x)$, then you can use $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{1+x^2}=frac{1}{1+(z+1)^2}=frac{1}{2text{i}}left(frac{1}{1-text{i}+z}-frac{1}{1+text{i}+z}right),,$$
                where $z:=x-1$. This gives
                $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{left(1+frac{z}{1-text{i}}right)^{-1}}{1-text{i}}-frac{left(1+frac{z}{1+text{i}}right)^{-1}}{1+text{i}}right),.$$
                Therefore, if $|z|<sqrt{2}$, then
                $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1-text{i}}right)^{k}}{1-text{i}}-frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1+text{i}}right)^{k}}{1+text{i}}right),.$$
                Simplifying this, we have
                $$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,(-1)^k,left(frac{frac1{(1-text{i})^{k+1}}-frac{1}{(1+text{i})^{k+1}}}{2text{i}}right),(x-1)^k$$
                for $xinmathbb{C}$ such that $|x-1|<sqrt{2}$.



                Using $1pmtext{i}=sqrt{2},expleft(pmdfrac{text{i}pi}{4}right)$, we conclude that
                $$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,frac{(-1)^k}{2^{frac{k+1}{2}}},sinleft(frac{(k+1)pi}{4}right),(x-1)^k$$
                for all complex numbers $x$ with $|x-1|<sqrt{2}$.
                Integrating the series above, we have
                $$text{arctan}(x)=frac{pi}{4}+sum_{k=1}^{infty},frac{(-1)^{k-1}}{2^{frac{k}{2}},k},sinleft(frac{kpi}{4}right),(x-1)^k,.$$
                for every $xinmathbb{C}$ such that $|x-1|<sqrt{2}$. In this way, it follows that
                $$y^{(k)}(1)=begin{cases}frac{pi}{4}&text{if }k=0,,\
                frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)&text{if }k=1,2,3,ldots,,
                end{cases}$$

                where $y(x):=text{arctan}(x)$.





                However, if you really want to solve the recursion without the expansion above, then let $a_k:=dfrac{y^{(k)}(1)}{(k-1)!}$ for $k=1,2,3,ldots$. From
                $$y^{(k+2)}(1)+(k+1),y^{(k+1)}(1)+frac{k(k+1)}{2},y^{(k)}(1)=0text{ for }k=1,2,3,ldots,,$$
                we divide both sides by $(k+1)!$ to get
                $$a_{k+2}+a_{k+1}+frac{1}{2},a_k=0text{ for }k=1,2,3,ldots,.$$
                The characteristic polynomial of the recursion above is $lambda^2+lambda+dfrac{1}{2}$, whose roots are $dfrac{-1pmtext{i}}{2}$. Therefore, for $k=1,2,3,ldots$,
                $$a_k=p,left(frac{-1+text{i}}{2}right)^k+q,left(frac{-1-text{i}}{2}right)^k$$
                for some fixed $p,qinmathbb{C}$. Since $a_1=dfrac{1}{2}$ and $a_2=-dfrac{1}{2}$, we get $$p=+frac{text{i}}{2}text{ and }q=-frac{text{i}}{2},,$$
                whence
                $$y^{(k)}(1)=frac{left(frac{-1+text{i}}{2}right)^k-,left(frac{-1-text{i}}{2}right)^k}{2text{i}},(k-1)!=frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)$$
                for $k=1,2,3,ldots$.






                share|cite|improve this answer












                If you simply want to find the Taylor series about $x=1$ of $text{arctan}(x)$, then you can use $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{1+x^2}=frac{1}{1+(z+1)^2}=frac{1}{2text{i}}left(frac{1}{1-text{i}+z}-frac{1}{1+text{i}+z}right),,$$
                where $z:=x-1$. This gives
                $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{left(1+frac{z}{1-text{i}}right)^{-1}}{1-text{i}}-frac{left(1+frac{z}{1+text{i}}right)^{-1}}{1+text{i}}right),.$$
                Therefore, if $|z|<sqrt{2}$, then
                $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1-text{i}}right)^{k}}{1-text{i}}-frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1+text{i}}right)^{k}}{1+text{i}}right),.$$
                Simplifying this, we have
                $$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,(-1)^k,left(frac{frac1{(1-text{i})^{k+1}}-frac{1}{(1+text{i})^{k+1}}}{2text{i}}right),(x-1)^k$$
                for $xinmathbb{C}$ such that $|x-1|<sqrt{2}$.



                Using $1pmtext{i}=sqrt{2},expleft(pmdfrac{text{i}pi}{4}right)$, we conclude that
                $$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,frac{(-1)^k}{2^{frac{k+1}{2}}},sinleft(frac{(k+1)pi}{4}right),(x-1)^k$$
                for all complex numbers $x$ with $|x-1|<sqrt{2}$.
                Integrating the series above, we have
                $$text{arctan}(x)=frac{pi}{4}+sum_{k=1}^{infty},frac{(-1)^{k-1}}{2^{frac{k}{2}},k},sinleft(frac{kpi}{4}right),(x-1)^k,.$$
                for every $xinmathbb{C}$ such that $|x-1|<sqrt{2}$. In this way, it follows that
                $$y^{(k)}(1)=begin{cases}frac{pi}{4}&text{if }k=0,,\
                frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)&text{if }k=1,2,3,ldots,,
                end{cases}$$

                where $y(x):=text{arctan}(x)$.





                However, if you really want to solve the recursion without the expansion above, then let $a_k:=dfrac{y^{(k)}(1)}{(k-1)!}$ for $k=1,2,3,ldots$. From
                $$y^{(k+2)}(1)+(k+1),y^{(k+1)}(1)+frac{k(k+1)}{2},y^{(k)}(1)=0text{ for }k=1,2,3,ldots,,$$
                we divide both sides by $(k+1)!$ to get
                $$a_{k+2}+a_{k+1}+frac{1}{2},a_k=0text{ for }k=1,2,3,ldots,.$$
                The characteristic polynomial of the recursion above is $lambda^2+lambda+dfrac{1}{2}$, whose roots are $dfrac{-1pmtext{i}}{2}$. Therefore, for $k=1,2,3,ldots$,
                $$a_k=p,left(frac{-1+text{i}}{2}right)^k+q,left(frac{-1-text{i}}{2}right)^k$$
                for some fixed $p,qinmathbb{C}$. Since $a_1=dfrac{1}{2}$ and $a_2=-dfrac{1}{2}$, we get $$p=+frac{text{i}}{2}text{ and }q=-frac{text{i}}{2},,$$
                whence
                $$y^{(k)}(1)=frac{left(frac{-1+text{i}}{2}right)^k-,left(frac{-1-text{i}}{2}right)^k}{2text{i}},(k-1)!=frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)$$
                for $k=1,2,3,ldots$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 18 at 15:25









                Batominovski

                31.8k23189




                31.8k23189






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003605%2fhow-to-solve-the-recursive-equation-yn2-n1yn1-tfracnn12%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Quarter-circle Tiles

                    build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                    Mont Emei