Expected value of square of distance after $n$ moves
up vote
1
down vote
favorite
I have this question and not too sure where to proceed.
A point starts from the origin and on any move is equally likely to go one unit up, down, left or right, independently of previous moves. Let $X_1, X_2, X_3$ and $X_4$ be random variables giving the number of moves up, down, left and right in a sequence of $n$ moves.
If $D$ is the distance from the origin after $n$ moves, show that $mathsf{E}(D^2)=n$.
I know that$ D^2=(X1 - X2)^2 + (X3- X4)^2$ and that each of $X1, X2$ will have a probability of $0.25$ but am not sure how to find the expected value of this.
probability
add a comment |
up vote
1
down vote
favorite
I have this question and not too sure where to proceed.
A point starts from the origin and on any move is equally likely to go one unit up, down, left or right, independently of previous moves. Let $X_1, X_2, X_3$ and $X_4$ be random variables giving the number of moves up, down, left and right in a sequence of $n$ moves.
If $D$ is the distance from the origin after $n$ moves, show that $mathsf{E}(D^2)=n$.
I know that$ D^2=(X1 - X2)^2 + (X3- X4)^2$ and that each of $X1, X2$ will have a probability of $0.25$ but am not sure how to find the expected value of this.
probability
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I have this question and not too sure where to proceed.
A point starts from the origin and on any move is equally likely to go one unit up, down, left or right, independently of previous moves. Let $X_1, X_2, X_3$ and $X_4$ be random variables giving the number of moves up, down, left and right in a sequence of $n$ moves.
If $D$ is the distance from the origin after $n$ moves, show that $mathsf{E}(D^2)=n$.
I know that$ D^2=(X1 - X2)^2 + (X3- X4)^2$ and that each of $X1, X2$ will have a probability of $0.25$ but am not sure how to find the expected value of this.
probability
I have this question and not too sure where to proceed.
A point starts from the origin and on any move is equally likely to go one unit up, down, left or right, independently of previous moves. Let $X_1, X_2, X_3$ and $X_4$ be random variables giving the number of moves up, down, left and right in a sequence of $n$ moves.
If $D$ is the distance from the origin after $n$ moves, show that $mathsf{E}(D^2)=n$.
I know that$ D^2=(X1 - X2)^2 + (X3- X4)^2$ and that each of $X1, X2$ will have a probability of $0.25$ but am not sure how to find the expected value of this.
probability
probability
edited Nov 15 at 21:58
David K
51.2k340113
51.2k340113
asked Mar 8 '17 at 14:08
johnnybigcanoe
264
264
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
2
down vote
It is easy to know that
$$
X_1 + X_2 + X_3 + X_4 = n
$$
and thus
$$
mathsf{E}((X_1 + X_2 + X_3 + X_4)^2) = sum_{i=1}^4 mathsf{E}(X_i^2) + sum_{i neq j} mathsf{E}(X_iX_j) = n^2 tag{$spadesuit$}
$$
Since each $X_i sim mathsf{Binomial}(n, 1/4)$, we have $mathsf{E}(X_i^2)=frac{3}{16}n + frac{1}{16}n^2$. Moreover, by symmetry, we have
$$
mathsf{E}(X_1X_2) = mathsf{E}(X_1X_3) =cdots = mathsf{E}(X_3X_4)
$$
Therefore, by $(spadesuit)$, we obtain
$$
mathsf{E}(X_1X_2) = mathsf{E}(X_1X_3) =cdots = mathsf{E}(X_3X_4) = frac{n^2 - frac{3}{4}n - frac{1}{4}n^2}{12} = frac{1}{16}(n^2 - n)
$$
Finally, we have
$$
mathsf{E}(D^2) = sum_{i=1}^4mathsf{E}(X_i^2) - 2mathsf{E}(X_1X_2) - 2mathsf{E}(X_3X_4) = frac{3}{4}n + frac{1}{4}n^2 - frac{1}{4}(n^2 - n) = n
$$
add a comment |
up vote
0
down vote
Alternative way is to express each of $X_i$ as the sum of indicator r.v.: let $U_i, D_i, L_i, R_i$ equal to $1$ if at the $i$th step particle moves up, down, left and right correspondingly. For all $i$
$$U_i+ D_i+ L_i+ R_i = 1, U_iD_i=0, L_iR_i=0$$
$$X_1=sum_{i=1}^n U_i, X_2=sum_{i=1}^n D_i, X_3=sum_{i=1}^n L_i, X_4=sum_{i=1}^n R_i.$$
Calculate the expected value of $D^2$:
$$mathbb ED^2=mathbb Eleft(sum_{i=1}^n (U_i-D_i)right)^2+mathbb Eleft(sum_{i=1}^n (L_i-R_i)right)^2=2mathbb Eleft(sum_{i=1}^n (U_i-D_i)right)^2.$$
Use $mathbb EX^2=text{Var} X + (mathbb EX)^2$:
$$mathbb ED^2=2 text{Var}left(sum_{i=1}^n (U_i-D_i)right)+2left(mathbb Esum_{i=1}^n (L_i-R_i)right)^2=$$
$$mathbb ED^2=2left(sum_{i=1}^n text{Var}(U_i-D_i)right)+2biggl(sum_{i=1}^n underbrace{mathbb E(L_i-R_i)}_{0}biggr)^2=2n text{Var}(U_1-D_1)=2n mathbb E(U_1^2+D_1^2-2underbrace{U_1D_1}_0)=4n mathbb EU_1^2=4n mathbb EU_1=4ncdot 0.25=n.$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
It is easy to know that
$$
X_1 + X_2 + X_3 + X_4 = n
$$
and thus
$$
mathsf{E}((X_1 + X_2 + X_3 + X_4)^2) = sum_{i=1}^4 mathsf{E}(X_i^2) + sum_{i neq j} mathsf{E}(X_iX_j) = n^2 tag{$spadesuit$}
$$
Since each $X_i sim mathsf{Binomial}(n, 1/4)$, we have $mathsf{E}(X_i^2)=frac{3}{16}n + frac{1}{16}n^2$. Moreover, by symmetry, we have
$$
mathsf{E}(X_1X_2) = mathsf{E}(X_1X_3) =cdots = mathsf{E}(X_3X_4)
$$
Therefore, by $(spadesuit)$, we obtain
$$
mathsf{E}(X_1X_2) = mathsf{E}(X_1X_3) =cdots = mathsf{E}(X_3X_4) = frac{n^2 - frac{3}{4}n - frac{1}{4}n^2}{12} = frac{1}{16}(n^2 - n)
$$
Finally, we have
$$
mathsf{E}(D^2) = sum_{i=1}^4mathsf{E}(X_i^2) - 2mathsf{E}(X_1X_2) - 2mathsf{E}(X_3X_4) = frac{3}{4}n + frac{1}{4}n^2 - frac{1}{4}(n^2 - n) = n
$$
add a comment |
up vote
2
down vote
It is easy to know that
$$
X_1 + X_2 + X_3 + X_4 = n
$$
and thus
$$
mathsf{E}((X_1 + X_2 + X_3 + X_4)^2) = sum_{i=1}^4 mathsf{E}(X_i^2) + sum_{i neq j} mathsf{E}(X_iX_j) = n^2 tag{$spadesuit$}
$$
Since each $X_i sim mathsf{Binomial}(n, 1/4)$, we have $mathsf{E}(X_i^2)=frac{3}{16}n + frac{1}{16}n^2$. Moreover, by symmetry, we have
$$
mathsf{E}(X_1X_2) = mathsf{E}(X_1X_3) =cdots = mathsf{E}(X_3X_4)
$$
Therefore, by $(spadesuit)$, we obtain
$$
mathsf{E}(X_1X_2) = mathsf{E}(X_1X_3) =cdots = mathsf{E}(X_3X_4) = frac{n^2 - frac{3}{4}n - frac{1}{4}n^2}{12} = frac{1}{16}(n^2 - n)
$$
Finally, we have
$$
mathsf{E}(D^2) = sum_{i=1}^4mathsf{E}(X_i^2) - 2mathsf{E}(X_1X_2) - 2mathsf{E}(X_3X_4) = frac{3}{4}n + frac{1}{4}n^2 - frac{1}{4}(n^2 - n) = n
$$
add a comment |
up vote
2
down vote
up vote
2
down vote
It is easy to know that
$$
X_1 + X_2 + X_3 + X_4 = n
$$
and thus
$$
mathsf{E}((X_1 + X_2 + X_3 + X_4)^2) = sum_{i=1}^4 mathsf{E}(X_i^2) + sum_{i neq j} mathsf{E}(X_iX_j) = n^2 tag{$spadesuit$}
$$
Since each $X_i sim mathsf{Binomial}(n, 1/4)$, we have $mathsf{E}(X_i^2)=frac{3}{16}n + frac{1}{16}n^2$. Moreover, by symmetry, we have
$$
mathsf{E}(X_1X_2) = mathsf{E}(X_1X_3) =cdots = mathsf{E}(X_3X_4)
$$
Therefore, by $(spadesuit)$, we obtain
$$
mathsf{E}(X_1X_2) = mathsf{E}(X_1X_3) =cdots = mathsf{E}(X_3X_4) = frac{n^2 - frac{3}{4}n - frac{1}{4}n^2}{12} = frac{1}{16}(n^2 - n)
$$
Finally, we have
$$
mathsf{E}(D^2) = sum_{i=1}^4mathsf{E}(X_i^2) - 2mathsf{E}(X_1X_2) - 2mathsf{E}(X_3X_4) = frac{3}{4}n + frac{1}{4}n^2 - frac{1}{4}(n^2 - n) = n
$$
It is easy to know that
$$
X_1 + X_2 + X_3 + X_4 = n
$$
and thus
$$
mathsf{E}((X_1 + X_2 + X_3 + X_4)^2) = sum_{i=1}^4 mathsf{E}(X_i^2) + sum_{i neq j} mathsf{E}(X_iX_j) = n^2 tag{$spadesuit$}
$$
Since each $X_i sim mathsf{Binomial}(n, 1/4)$, we have $mathsf{E}(X_i^2)=frac{3}{16}n + frac{1}{16}n^2$. Moreover, by symmetry, we have
$$
mathsf{E}(X_1X_2) = mathsf{E}(X_1X_3) =cdots = mathsf{E}(X_3X_4)
$$
Therefore, by $(spadesuit)$, we obtain
$$
mathsf{E}(X_1X_2) = mathsf{E}(X_1X_3) =cdots = mathsf{E}(X_3X_4) = frac{n^2 - frac{3}{4}n - frac{1}{4}n^2}{12} = frac{1}{16}(n^2 - n)
$$
Finally, we have
$$
mathsf{E}(D^2) = sum_{i=1}^4mathsf{E}(X_i^2) - 2mathsf{E}(X_1X_2) - 2mathsf{E}(X_3X_4) = frac{3}{4}n + frac{1}{4}n^2 - frac{1}{4}(n^2 - n) = n
$$
answered Mar 8 '17 at 14:33
PSPACEhard
8,7901826
8,7901826
add a comment |
add a comment |
up vote
0
down vote
Alternative way is to express each of $X_i$ as the sum of indicator r.v.: let $U_i, D_i, L_i, R_i$ equal to $1$ if at the $i$th step particle moves up, down, left and right correspondingly. For all $i$
$$U_i+ D_i+ L_i+ R_i = 1, U_iD_i=0, L_iR_i=0$$
$$X_1=sum_{i=1}^n U_i, X_2=sum_{i=1}^n D_i, X_3=sum_{i=1}^n L_i, X_4=sum_{i=1}^n R_i.$$
Calculate the expected value of $D^2$:
$$mathbb ED^2=mathbb Eleft(sum_{i=1}^n (U_i-D_i)right)^2+mathbb Eleft(sum_{i=1}^n (L_i-R_i)right)^2=2mathbb Eleft(sum_{i=1}^n (U_i-D_i)right)^2.$$
Use $mathbb EX^2=text{Var} X + (mathbb EX)^2$:
$$mathbb ED^2=2 text{Var}left(sum_{i=1}^n (U_i-D_i)right)+2left(mathbb Esum_{i=1}^n (L_i-R_i)right)^2=$$
$$mathbb ED^2=2left(sum_{i=1}^n text{Var}(U_i-D_i)right)+2biggl(sum_{i=1}^n underbrace{mathbb E(L_i-R_i)}_{0}biggr)^2=2n text{Var}(U_1-D_1)=2n mathbb E(U_1^2+D_1^2-2underbrace{U_1D_1}_0)=4n mathbb EU_1^2=4n mathbb EU_1=4ncdot 0.25=n.$$
add a comment |
up vote
0
down vote
Alternative way is to express each of $X_i$ as the sum of indicator r.v.: let $U_i, D_i, L_i, R_i$ equal to $1$ if at the $i$th step particle moves up, down, left and right correspondingly. For all $i$
$$U_i+ D_i+ L_i+ R_i = 1, U_iD_i=0, L_iR_i=0$$
$$X_1=sum_{i=1}^n U_i, X_2=sum_{i=1}^n D_i, X_3=sum_{i=1}^n L_i, X_4=sum_{i=1}^n R_i.$$
Calculate the expected value of $D^2$:
$$mathbb ED^2=mathbb Eleft(sum_{i=1}^n (U_i-D_i)right)^2+mathbb Eleft(sum_{i=1}^n (L_i-R_i)right)^2=2mathbb Eleft(sum_{i=1}^n (U_i-D_i)right)^2.$$
Use $mathbb EX^2=text{Var} X + (mathbb EX)^2$:
$$mathbb ED^2=2 text{Var}left(sum_{i=1}^n (U_i-D_i)right)+2left(mathbb Esum_{i=1}^n (L_i-R_i)right)^2=$$
$$mathbb ED^2=2left(sum_{i=1}^n text{Var}(U_i-D_i)right)+2biggl(sum_{i=1}^n underbrace{mathbb E(L_i-R_i)}_{0}biggr)^2=2n text{Var}(U_1-D_1)=2n mathbb E(U_1^2+D_1^2-2underbrace{U_1D_1}_0)=4n mathbb EU_1^2=4n mathbb EU_1=4ncdot 0.25=n.$$
add a comment |
up vote
0
down vote
up vote
0
down vote
Alternative way is to express each of $X_i$ as the sum of indicator r.v.: let $U_i, D_i, L_i, R_i$ equal to $1$ if at the $i$th step particle moves up, down, left and right correspondingly. For all $i$
$$U_i+ D_i+ L_i+ R_i = 1, U_iD_i=0, L_iR_i=0$$
$$X_1=sum_{i=1}^n U_i, X_2=sum_{i=1}^n D_i, X_3=sum_{i=1}^n L_i, X_4=sum_{i=1}^n R_i.$$
Calculate the expected value of $D^2$:
$$mathbb ED^2=mathbb Eleft(sum_{i=1}^n (U_i-D_i)right)^2+mathbb Eleft(sum_{i=1}^n (L_i-R_i)right)^2=2mathbb Eleft(sum_{i=1}^n (U_i-D_i)right)^2.$$
Use $mathbb EX^2=text{Var} X + (mathbb EX)^2$:
$$mathbb ED^2=2 text{Var}left(sum_{i=1}^n (U_i-D_i)right)+2left(mathbb Esum_{i=1}^n (L_i-R_i)right)^2=$$
$$mathbb ED^2=2left(sum_{i=1}^n text{Var}(U_i-D_i)right)+2biggl(sum_{i=1}^n underbrace{mathbb E(L_i-R_i)}_{0}biggr)^2=2n text{Var}(U_1-D_1)=2n mathbb E(U_1^2+D_1^2-2underbrace{U_1D_1}_0)=4n mathbb EU_1^2=4n mathbb EU_1=4ncdot 0.25=n.$$
Alternative way is to express each of $X_i$ as the sum of indicator r.v.: let $U_i, D_i, L_i, R_i$ equal to $1$ if at the $i$th step particle moves up, down, left and right correspondingly. For all $i$
$$U_i+ D_i+ L_i+ R_i = 1, U_iD_i=0, L_iR_i=0$$
$$X_1=sum_{i=1}^n U_i, X_2=sum_{i=1}^n D_i, X_3=sum_{i=1}^n L_i, X_4=sum_{i=1}^n R_i.$$
Calculate the expected value of $D^2$:
$$mathbb ED^2=mathbb Eleft(sum_{i=1}^n (U_i-D_i)right)^2+mathbb Eleft(sum_{i=1}^n (L_i-R_i)right)^2=2mathbb Eleft(sum_{i=1}^n (U_i-D_i)right)^2.$$
Use $mathbb EX^2=text{Var} X + (mathbb EX)^2$:
$$mathbb ED^2=2 text{Var}left(sum_{i=1}^n (U_i-D_i)right)+2left(mathbb Esum_{i=1}^n (L_i-R_i)right)^2=$$
$$mathbb ED^2=2left(sum_{i=1}^n text{Var}(U_i-D_i)right)+2biggl(sum_{i=1}^n underbrace{mathbb E(L_i-R_i)}_{0}biggr)^2=2n text{Var}(U_1-D_1)=2n mathbb E(U_1^2+D_1^2-2underbrace{U_1D_1}_0)=4n mathbb EU_1^2=4n mathbb EU_1=4ncdot 0.25=n.$$
answered Mar 8 '17 at 14:58
NCh
6,0882722
6,0882722
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2177597%2fexpected-value-of-square-of-distance-after-n-moves%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown