Given a triangle with coners $A,B,C$, Show $sin(A)+sin(B)+sin(C) leq frac{3sqrt{3}}{2}$ [duplicate]
up vote
0
down vote
favorite
This question already has an answer here:
Maximum value of $sin A+sin B+sin C$?
5 answers
Given a triangle with vertices $A,B,C$, Show $sin(A)+sin(B)+sin(C) leq frac{3 sqrt{3}}{2}$.
Here is a proof using Jensen inequality: $sin(x)$ is concave from $0$ to $pi$.
hence $frac{sin(A)+sin(B)+sin(C)}{3} leq sin(frac{A+B+C}{3})=frac{sqrt 3}{2}$ and hence we get the desired inequality by multiplying the previous inequality by $3$.
algebra-precalculus trigonometry
New contributor
marked as duplicate by lab bhattacharjee
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 17 at 2:36
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
up vote
0
down vote
favorite
This question already has an answer here:
Maximum value of $sin A+sin B+sin C$?
5 answers
Given a triangle with vertices $A,B,C$, Show $sin(A)+sin(B)+sin(C) leq frac{3 sqrt{3}}{2}$.
Here is a proof using Jensen inequality: $sin(x)$ is concave from $0$ to $pi$.
hence $frac{sin(A)+sin(B)+sin(C)}{3} leq sin(frac{A+B+C}{3})=frac{sqrt 3}{2}$ and hence we get the desired inequality by multiplying the previous inequality by $3$.
algebra-precalculus trigonometry
New contributor
marked as duplicate by lab bhattacharjee
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 17 at 2:36
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
This question already has an answer here:
Maximum value of $sin A+sin B+sin C$?
5 answers
Given a triangle with vertices $A,B,C$, Show $sin(A)+sin(B)+sin(C) leq frac{3 sqrt{3}}{2}$.
Here is a proof using Jensen inequality: $sin(x)$ is concave from $0$ to $pi$.
hence $frac{sin(A)+sin(B)+sin(C)}{3} leq sin(frac{A+B+C}{3})=frac{sqrt 3}{2}$ and hence we get the desired inequality by multiplying the previous inequality by $3$.
algebra-precalculus trigonometry
New contributor
This question already has an answer here:
Maximum value of $sin A+sin B+sin C$?
5 answers
Given a triangle with vertices $A,B,C$, Show $sin(A)+sin(B)+sin(C) leq frac{3 sqrt{3}}{2}$.
Here is a proof using Jensen inequality: $sin(x)$ is concave from $0$ to $pi$.
hence $frac{sin(A)+sin(B)+sin(C)}{3} leq sin(frac{A+B+C}{3})=frac{sqrt 3}{2}$ and hence we get the desired inequality by multiplying the previous inequality by $3$.
This question already has an answer here:
Maximum value of $sin A+sin B+sin C$?
5 answers
algebra-precalculus trigonometry
algebra-precalculus trigonometry
New contributor
New contributor
edited Nov 16 at 0:52
achille hui
93.4k5127251
93.4k5127251
New contributor
asked Nov 15 at 23:48
mathnoob
63511
63511
New contributor
New contributor
marked as duplicate by lab bhattacharjee
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 17 at 2:36
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by lab bhattacharjee
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 17 at 2:36
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
2
down vote
You want maximize $$ f(A,B,C)=sin A+sin B+sin C$$ subject to $$ A+B+C=180$$
Lagrange multipliers implies $$ (cos A,cos B ,cos C)=(1,1,1)$$ which gives you $$A=B=C=60$$
That gives the maximum value of $3sqrt 3/2$
add a comment |
up vote
1
down vote
This is a proof without Jensen's inequality. It mimic the proof for AM $ge$ GM for $3$ items.
Notice for any $x, y in (0,pi)$, $$sin x + sin y = 2sinfrac{x+y}{2}cosfrac{x-y}{2} le 2sinfrac{x+y}{2}$$
So for any $x,y,z in (0,pi)$, if we define $w = frac{x+y+z}{3}$, we will have
$$begin{align}sin x + sin y + sin z + sin w
&le 2sinfrac{x+y}{2} + 2sinfrac{z+w}{2}\
& le 4sinfrac{x+y+z+w}{4} \
&= 4sin w
end{align}$$
This leads to
$$sin x + sin y + sin z le 3 sin w = 3 sin frac{x+y+z}{3}$$
For any non-degenerate triangle, its angle $A,B,C in (0,pi)$ and $A+B+C = pi$. Above result implies
$$sin A + sin B + sin C le 3 sinfrac{pi}{3} = frac{3sqrt{3}}{2}$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
You want maximize $$ f(A,B,C)=sin A+sin B+sin C$$ subject to $$ A+B+C=180$$
Lagrange multipliers implies $$ (cos A,cos B ,cos C)=(1,1,1)$$ which gives you $$A=B=C=60$$
That gives the maximum value of $3sqrt 3/2$
add a comment |
up vote
2
down vote
You want maximize $$ f(A,B,C)=sin A+sin B+sin C$$ subject to $$ A+B+C=180$$
Lagrange multipliers implies $$ (cos A,cos B ,cos C)=(1,1,1)$$ which gives you $$A=B=C=60$$
That gives the maximum value of $3sqrt 3/2$
add a comment |
up vote
2
down vote
up vote
2
down vote
You want maximize $$ f(A,B,C)=sin A+sin B+sin C$$ subject to $$ A+B+C=180$$
Lagrange multipliers implies $$ (cos A,cos B ,cos C)=(1,1,1)$$ which gives you $$A=B=C=60$$
That gives the maximum value of $3sqrt 3/2$
You want maximize $$ f(A,B,C)=sin A+sin B+sin C$$ subject to $$ A+B+C=180$$
Lagrange multipliers implies $$ (cos A,cos B ,cos C)=(1,1,1)$$ which gives you $$A=B=C=60$$
That gives the maximum value of $3sqrt 3/2$
answered Nov 16 at 0:06
Mohammad Riazi-Kermani
40.2k41958
40.2k41958
add a comment |
add a comment |
up vote
1
down vote
This is a proof without Jensen's inequality. It mimic the proof for AM $ge$ GM for $3$ items.
Notice for any $x, y in (0,pi)$, $$sin x + sin y = 2sinfrac{x+y}{2}cosfrac{x-y}{2} le 2sinfrac{x+y}{2}$$
So for any $x,y,z in (0,pi)$, if we define $w = frac{x+y+z}{3}$, we will have
$$begin{align}sin x + sin y + sin z + sin w
&le 2sinfrac{x+y}{2} + 2sinfrac{z+w}{2}\
& le 4sinfrac{x+y+z+w}{4} \
&= 4sin w
end{align}$$
This leads to
$$sin x + sin y + sin z le 3 sin w = 3 sin frac{x+y+z}{3}$$
For any non-degenerate triangle, its angle $A,B,C in (0,pi)$ and $A+B+C = pi$. Above result implies
$$sin A + sin B + sin C le 3 sinfrac{pi}{3} = frac{3sqrt{3}}{2}$$
add a comment |
up vote
1
down vote
This is a proof without Jensen's inequality. It mimic the proof for AM $ge$ GM for $3$ items.
Notice for any $x, y in (0,pi)$, $$sin x + sin y = 2sinfrac{x+y}{2}cosfrac{x-y}{2} le 2sinfrac{x+y}{2}$$
So for any $x,y,z in (0,pi)$, if we define $w = frac{x+y+z}{3}$, we will have
$$begin{align}sin x + sin y + sin z + sin w
&le 2sinfrac{x+y}{2} + 2sinfrac{z+w}{2}\
& le 4sinfrac{x+y+z+w}{4} \
&= 4sin w
end{align}$$
This leads to
$$sin x + sin y + sin z le 3 sin w = 3 sin frac{x+y+z}{3}$$
For any non-degenerate triangle, its angle $A,B,C in (0,pi)$ and $A+B+C = pi$. Above result implies
$$sin A + sin B + sin C le 3 sinfrac{pi}{3} = frac{3sqrt{3}}{2}$$
add a comment |
up vote
1
down vote
up vote
1
down vote
This is a proof without Jensen's inequality. It mimic the proof for AM $ge$ GM for $3$ items.
Notice for any $x, y in (0,pi)$, $$sin x + sin y = 2sinfrac{x+y}{2}cosfrac{x-y}{2} le 2sinfrac{x+y}{2}$$
So for any $x,y,z in (0,pi)$, if we define $w = frac{x+y+z}{3}$, we will have
$$begin{align}sin x + sin y + sin z + sin w
&le 2sinfrac{x+y}{2} + 2sinfrac{z+w}{2}\
& le 4sinfrac{x+y+z+w}{4} \
&= 4sin w
end{align}$$
This leads to
$$sin x + sin y + sin z le 3 sin w = 3 sin frac{x+y+z}{3}$$
For any non-degenerate triangle, its angle $A,B,C in (0,pi)$ and $A+B+C = pi$. Above result implies
$$sin A + sin B + sin C le 3 sinfrac{pi}{3} = frac{3sqrt{3}}{2}$$
This is a proof without Jensen's inequality. It mimic the proof for AM $ge$ GM for $3$ items.
Notice for any $x, y in (0,pi)$, $$sin x + sin y = 2sinfrac{x+y}{2}cosfrac{x-y}{2} le 2sinfrac{x+y}{2}$$
So for any $x,y,z in (0,pi)$, if we define $w = frac{x+y+z}{3}$, we will have
$$begin{align}sin x + sin y + sin z + sin w
&le 2sinfrac{x+y}{2} + 2sinfrac{z+w}{2}\
& le 4sinfrac{x+y+z+w}{4} \
&= 4sin w
end{align}$$
This leads to
$$sin x + sin y + sin z le 3 sin w = 3 sin frac{x+y+z}{3}$$
For any non-degenerate triangle, its angle $A,B,C in (0,pi)$ and $A+B+C = pi$. Above result implies
$$sin A + sin B + sin C le 3 sinfrac{pi}{3} = frac{3sqrt{3}}{2}$$
answered Nov 16 at 0:28
achille hui
93.4k5127251
93.4k5127251
add a comment |
add a comment |