Evaluation of infinite series summation











up vote
1
down vote

favorite
1













Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$




Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



$$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



So $$S =sum^{infty}_{k=1}frac{k^2cdot (2k)!}{(2k+2)!}=sum^{infty}_{k=1}frac{k^2cdot(2k)!cdot 1!}{(2k+1+1)!}$$



with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$



$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$



So $$S=sum^{infty}_{k=1}k^2int^{1}_{0}(x)^{2k}(1-x)dx$$



$$S=int^{1}_{0}(1-x)sum^{infty}_{k=1}(kx^k)^2dx$$



can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although i am trying to solve it but it is to lengthy.



please explain me ,thanks










share|cite|improve this question






















  • Easier: Use partial fractions on the summand first, then sum.
    – user10354138
    1 hour ago

















up vote
1
down vote

favorite
1













Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$




Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



$$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



So $$S =sum^{infty}_{k=1}frac{k^2cdot (2k)!}{(2k+2)!}=sum^{infty}_{k=1}frac{k^2cdot(2k)!cdot 1!}{(2k+1+1)!}$$



with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$



$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$



So $$S=sum^{infty}_{k=1}k^2int^{1}_{0}(x)^{2k}(1-x)dx$$



$$S=int^{1}_{0}(1-x)sum^{infty}_{k=1}(kx^k)^2dx$$



can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although i am trying to solve it but it is to lengthy.



please explain me ,thanks










share|cite|improve this question






















  • Easier: Use partial fractions on the summand first, then sum.
    – user10354138
    1 hour ago















up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1






Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$




Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



$$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



So $$S =sum^{infty}_{k=1}frac{k^2cdot (2k)!}{(2k+2)!}=sum^{infty}_{k=1}frac{k^2cdot(2k)!cdot 1!}{(2k+1+1)!}$$



with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$



$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$



So $$S=sum^{infty}_{k=1}k^2int^{1}_{0}(x)^{2k}(1-x)dx$$



$$S=int^{1}_{0}(1-x)sum^{infty}_{k=1}(kx^k)^2dx$$



can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although i am trying to solve it but it is to lengthy.



please explain me ,thanks










share|cite|improve this question














Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$




Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



$$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



So $$S =sum^{infty}_{k=1}frac{k^2cdot (2k)!}{(2k+2)!}=sum^{infty}_{k=1}frac{k^2cdot(2k)!cdot 1!}{(2k+1+1)!}$$



with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$



$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$



So $$S=sum^{infty}_{k=1}k^2int^{1}_{0}(x)^{2k}(1-x)dx$$



$$S=int^{1}_{0}(1-x)sum^{infty}_{k=1}(kx^k)^2dx$$



can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although i am trying to solve it but it is to lengthy.



please explain me ,thanks







sequences-and-series






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









Durgesh Tiwari

5,2912630




5,2912630












  • Easier: Use partial fractions on the summand first, then sum.
    – user10354138
    1 hour ago




















  • Easier: Use partial fractions on the summand first, then sum.
    – user10354138
    1 hour ago


















Easier: Use partial fractions on the summand first, then sum.
– user10354138
1 hour ago






Easier: Use partial fractions on the summand first, then sum.
– user10354138
1 hour ago












4 Answers
4






active

oldest

votes

















up vote
4
down vote













Good so far, to finish the proof notice that,



$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$



Differentiating,



$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$



Multiply by $z$ then differentiate again,



$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$



So we have that,



$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$



Put in $z = x^2$ to obtain,



$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$



The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.






share|cite|improve this answer








New contributor




symchdmath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

























    up vote
    1
    down vote













    Applying partial fractions along with the digamma function, we get that:



    begin{align*}
    sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
    &=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
    &= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
    &= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
    &=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
    &= frac{1}{24} left ( log 16 -1 right ) \
    & =frac{4 log 2 -1}{24}
    end{align*}






    share|cite|improve this answer





















    • This does not address the question, does it ? (I admit that the OP was unclear.)
      – Yves Daoust
      21 mins ago




















    up vote
    0
    down vote













    Too long for a comment.



    In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
    $$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
    $$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
    n^2}+Oleft(frac{1}{n^3}right)$$
    For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.






    share|cite|improve this answer




























      up vote
      0
      down vote













      Hint:



      $$sum t^k=f(t),$$



      $$sum kt^{k-1}=f'(t),$$



      $$sum kt^k=tf'(t),$$



      $$sum k^2t^{k-1}=(tf'(t)),$$



      $$sum k^2t^k=t(tf'(t))',$$



      $$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042344%2fevaluation-of-infinite-series-summation%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        4
        down vote













        Good so far, to finish the proof notice that,



        $$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$



        Differentiating,



        $$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$



        Multiply by $z$ then differentiate again,



        $$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$



        So we have that,



        $$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$



        Put in $z = x^2$ to obtain,



        $$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$



        The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.






        share|cite|improve this answer








        New contributor




        symchdmath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






















          up vote
          4
          down vote













          Good so far, to finish the proof notice that,



          $$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$



          Differentiating,



          $$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$



          Multiply by $z$ then differentiate again,



          $$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$



          So we have that,



          $$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$



          Put in $z = x^2$ to obtain,



          $$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$



          The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.






          share|cite|improve this answer








          New contributor




          symchdmath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.




















            up vote
            4
            down vote










            up vote
            4
            down vote









            Good so far, to finish the proof notice that,



            $$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$



            Differentiating,



            $$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$



            Multiply by $z$ then differentiate again,



            $$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$



            So we have that,



            $$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$



            Put in $z = x^2$ to obtain,



            $$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$



            The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.






            share|cite|improve this answer








            New contributor




            symchdmath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            Good so far, to finish the proof notice that,



            $$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$



            Differentiating,



            $$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$



            Multiply by $z$ then differentiate again,



            $$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$



            So we have that,



            $$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$



            Put in $z = x^2$ to obtain,



            $$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$



            The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.







            share|cite|improve this answer








            New contributor




            symchdmath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            share|cite|improve this answer



            share|cite|improve this answer






            New contributor




            symchdmath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            answered 1 hour ago









            symchdmath

            885




            885




            New contributor




            symchdmath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.





            New contributor





            symchdmath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            symchdmath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






















                up vote
                1
                down vote













                Applying partial fractions along with the digamma function, we get that:



                begin{align*}
                sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                &=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                &= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
                &= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
                &=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
                &= frac{1}{24} left ( log 16 -1 right ) \
                & =frac{4 log 2 -1}{24}
                end{align*}






                share|cite|improve this answer





















                • This does not address the question, does it ? (I admit that the OP was unclear.)
                  – Yves Daoust
                  21 mins ago

















                up vote
                1
                down vote













                Applying partial fractions along with the digamma function, we get that:



                begin{align*}
                sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                &=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                &= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
                &= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
                &=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
                &= frac{1}{24} left ( log 16 -1 right ) \
                & =frac{4 log 2 -1}{24}
                end{align*}






                share|cite|improve this answer





















                • This does not address the question, does it ? (I admit that the OP was unclear.)
                  – Yves Daoust
                  21 mins ago















                up vote
                1
                down vote










                up vote
                1
                down vote









                Applying partial fractions along with the digamma function, we get that:



                begin{align*}
                sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                &=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                &= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
                &= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
                &=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
                &= frac{1}{24} left ( log 16 -1 right ) \
                & =frac{4 log 2 -1}{24}
                end{align*}






                share|cite|improve this answer












                Applying partial fractions along with the digamma function, we get that:



                begin{align*}
                sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                &=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                &= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
                &= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
                &=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
                &= frac{1}{24} left ( log 16 -1 right ) \
                & =frac{4 log 2 -1}{24}
                end{align*}







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 58 mins ago









                Tolaso

                3,3751131




                3,3751131












                • This does not address the question, does it ? (I admit that the OP was unclear.)
                  – Yves Daoust
                  21 mins ago




















                • This does not address the question, does it ? (I admit that the OP was unclear.)
                  – Yves Daoust
                  21 mins ago


















                This does not address the question, does it ? (I admit that the OP was unclear.)
                – Yves Daoust
                21 mins ago






                This does not address the question, does it ? (I admit that the OP was unclear.)
                – Yves Daoust
                21 mins ago












                up vote
                0
                down vote













                Too long for a comment.



                In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
                $$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
                $$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
                n^2}+Oleft(frac{1}{n^3}right)$$
                For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.






                share|cite|improve this answer

























                  up vote
                  0
                  down vote













                  Too long for a comment.



                  In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
                  $$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
                  $$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
                  n^2}+Oleft(frac{1}{n^3}right)$$
                  For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.






                  share|cite|improve this answer























                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote









                    Too long for a comment.



                    In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
                    $$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
                    $$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
                    n^2}+Oleft(frac{1}{n^3}right)$$
                    For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.






                    share|cite|improve this answer












                    Too long for a comment.



                    In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
                    $$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
                    $$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
                    n^2}+Oleft(frac{1}{n^3}right)$$
                    For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 28 mins ago









                    Claude Leibovici

                    118k1156131




                    118k1156131






















                        up vote
                        0
                        down vote













                        Hint:



                        $$sum t^k=f(t),$$



                        $$sum kt^{k-1}=f'(t),$$



                        $$sum kt^k=tf'(t),$$



                        $$sum k^2t^{k-1}=(tf'(t)),$$



                        $$sum k^2t^k=t(tf'(t))',$$



                        $$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote













                          Hint:



                          $$sum t^k=f(t),$$



                          $$sum kt^{k-1}=f'(t),$$



                          $$sum kt^k=tf'(t),$$



                          $$sum k^2t^{k-1}=(tf'(t)),$$



                          $$sum k^2t^k=t(tf'(t))',$$



                          $$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$






                          share|cite|improve this answer























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            Hint:



                            $$sum t^k=f(t),$$



                            $$sum kt^{k-1}=f'(t),$$



                            $$sum kt^k=tf'(t),$$



                            $$sum k^2t^{k-1}=(tf'(t)),$$



                            $$sum k^2t^k=t(tf'(t))',$$



                            $$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$






                            share|cite|improve this answer












                            Hint:



                            $$sum t^k=f(t),$$



                            $$sum kt^{k-1}=f'(t),$$



                            $$sum kt^k=tf'(t),$$



                            $$sum k^2t^{k-1}=(tf'(t)),$$



                            $$sum k^2t^k=t(tf'(t))',$$



                            $$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 17 mins ago









                            Yves Daoust

                            123k668219




                            123k668219






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042344%2fevaluation-of-infinite-series-summation%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Ellipse (mathématiques)

                                Quarter-circle Tiles

                                Mont Emei