Evaluation of infinite series summation
up vote
1
down vote
favorite
Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
$$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
So $$S =sum^{infty}_{k=1}frac{k^2cdot (2k)!}{(2k+2)!}=sum^{infty}_{k=1}frac{k^2cdot(2k)!cdot 1!}{(2k+1+1)!}$$
with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$
$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$
So $$S=sum^{infty}_{k=1}k^2int^{1}_{0}(x)^{2k}(1-x)dx$$
$$S=int^{1}_{0}(1-x)sum^{infty}_{k=1}(kx^k)^2dx$$
can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although i am trying to solve it but it is to lengthy.
please explain me ,thanks
sequences-and-series
add a comment |
up vote
1
down vote
favorite
Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
$$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
So $$S =sum^{infty}_{k=1}frac{k^2cdot (2k)!}{(2k+2)!}=sum^{infty}_{k=1}frac{k^2cdot(2k)!cdot 1!}{(2k+1+1)!}$$
with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$
$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$
So $$S=sum^{infty}_{k=1}k^2int^{1}_{0}(x)^{2k}(1-x)dx$$
$$S=int^{1}_{0}(1-x)sum^{infty}_{k=1}(kx^k)^2dx$$
can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although i am trying to solve it but it is to lengthy.
please explain me ,thanks
sequences-and-series
Easier: Use partial fractions on the summand first, then sum.
– user10354138
1 hour ago
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
$$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
So $$S =sum^{infty}_{k=1}frac{k^2cdot (2k)!}{(2k+2)!}=sum^{infty}_{k=1}frac{k^2cdot(2k)!cdot 1!}{(2k+1+1)!}$$
with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$
$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$
So $$S=sum^{infty}_{k=1}k^2int^{1}_{0}(x)^{2k}(1-x)dx$$
$$S=int^{1}_{0}(1-x)sum^{infty}_{k=1}(kx^k)^2dx$$
can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although i am trying to solve it but it is to lengthy.
please explain me ,thanks
sequences-and-series
Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
$$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
So $$S =sum^{infty}_{k=1}frac{k^2cdot (2k)!}{(2k+2)!}=sum^{infty}_{k=1}frac{k^2cdot(2k)!cdot 1!}{(2k+1+1)!}$$
with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$
$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$
So $$S=sum^{infty}_{k=1}k^2int^{1}_{0}(x)^{2k}(1-x)dx$$
$$S=int^{1}_{0}(1-x)sum^{infty}_{k=1}(kx^k)^2dx$$
can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although i am trying to solve it but it is to lengthy.
please explain me ,thanks
sequences-and-series
sequences-and-series
asked 1 hour ago
Durgesh Tiwari
5,2912630
5,2912630
Easier: Use partial fractions on the summand first, then sum.
– user10354138
1 hour ago
add a comment |
Easier: Use partial fractions on the summand first, then sum.
– user10354138
1 hour ago
Easier: Use partial fractions on the summand first, then sum.
– user10354138
1 hour ago
Easier: Use partial fractions on the summand first, then sum.
– user10354138
1 hour ago
add a comment |
4 Answers
4
active
oldest
votes
up vote
4
down vote
Good so far, to finish the proof notice that,
$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$
Differentiating,
$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$
Multiply by $z$ then differentiate again,
$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$
So we have that,
$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$
Put in $z = x^2$ to obtain,
$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$
The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.
New contributor
add a comment |
up vote
1
down vote
Applying partial fractions along with the digamma function, we get that:
begin{align*}
sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
&= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
&=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
&= frac{1}{24} left ( log 16 -1 right ) \
& =frac{4 log 2 -1}{24}
end{align*}
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
21 mins ago
add a comment |
up vote
0
down vote
Too long for a comment.
In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
$$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
$$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
n^2}+Oleft(frac{1}{n^3}right)$$ For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.
add a comment |
up vote
0
down vote
Hint:
$$sum t^k=f(t),$$
$$sum kt^{k-1}=f'(t),$$
$$sum kt^k=tf'(t),$$
$$sum k^2t^{k-1}=(tf'(t)),$$
$$sum k^2t^k=t(tf'(t))',$$
$$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042344%2fevaluation-of-infinite-series-summation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
Good so far, to finish the proof notice that,
$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$
Differentiating,
$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$
Multiply by $z$ then differentiate again,
$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$
So we have that,
$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$
Put in $z = x^2$ to obtain,
$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$
The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.
New contributor
add a comment |
up vote
4
down vote
Good so far, to finish the proof notice that,
$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$
Differentiating,
$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$
Multiply by $z$ then differentiate again,
$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$
So we have that,
$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$
Put in $z = x^2$ to obtain,
$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$
The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.
New contributor
add a comment |
up vote
4
down vote
up vote
4
down vote
Good so far, to finish the proof notice that,
$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$
Differentiating,
$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$
Multiply by $z$ then differentiate again,
$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$
So we have that,
$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$
Put in $z = x^2$ to obtain,
$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$
The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.
New contributor
Good so far, to finish the proof notice that,
$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$
Differentiating,
$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$
Multiply by $z$ then differentiate again,
$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$
So we have that,
$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$
Put in $z = x^2$ to obtain,
$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$
The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.
New contributor
New contributor
answered 1 hour ago
symchdmath
885
885
New contributor
New contributor
add a comment |
add a comment |
up vote
1
down vote
Applying partial fractions along with the digamma function, we get that:
begin{align*}
sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
&= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
&=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
&= frac{1}{24} left ( log 16 -1 right ) \
& =frac{4 log 2 -1}{24}
end{align*}
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
21 mins ago
add a comment |
up vote
1
down vote
Applying partial fractions along with the digamma function, we get that:
begin{align*}
sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
&= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
&=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
&= frac{1}{24} left ( log 16 -1 right ) \
& =frac{4 log 2 -1}{24}
end{align*}
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
21 mins ago
add a comment |
up vote
1
down vote
up vote
1
down vote
Applying partial fractions along with the digamma function, we get that:
begin{align*}
sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
&= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
&=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
&= frac{1}{24} left ( log 16 -1 right ) \
& =frac{4 log 2 -1}{24}
end{align*}
Applying partial fractions along with the digamma function, we get that:
begin{align*}
sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
&= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
&=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
&= frac{1}{24} left ( log 16 -1 right ) \
& =frac{4 log 2 -1}{24}
end{align*}
answered 58 mins ago
Tolaso
3,3751131
3,3751131
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
21 mins ago
add a comment |
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
21 mins ago
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
21 mins ago
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
21 mins ago
add a comment |
up vote
0
down vote
Too long for a comment.
In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
$$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
$$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
n^2}+Oleft(frac{1}{n^3}right)$$ For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.
add a comment |
up vote
0
down vote
Too long for a comment.
In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
$$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
$$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
n^2}+Oleft(frac{1}{n^3}right)$$ For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.
add a comment |
up vote
0
down vote
up vote
0
down vote
Too long for a comment.
In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
$$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
$$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
n^2}+Oleft(frac{1}{n^3}right)$$ For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.
Too long for a comment.
In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
$$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
$$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
n^2}+Oleft(frac{1}{n^3}right)$$ For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.
answered 28 mins ago
Claude Leibovici
118k1156131
118k1156131
add a comment |
add a comment |
up vote
0
down vote
Hint:
$$sum t^k=f(t),$$
$$sum kt^{k-1}=f'(t),$$
$$sum kt^k=tf'(t),$$
$$sum k^2t^{k-1}=(tf'(t)),$$
$$sum k^2t^k=t(tf'(t))',$$
$$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$
add a comment |
up vote
0
down vote
Hint:
$$sum t^k=f(t),$$
$$sum kt^{k-1}=f'(t),$$
$$sum kt^k=tf'(t),$$
$$sum k^2t^{k-1}=(tf'(t)),$$
$$sum k^2t^k=t(tf'(t))',$$
$$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$
add a comment |
up vote
0
down vote
up vote
0
down vote
Hint:
$$sum t^k=f(t),$$
$$sum kt^{k-1}=f'(t),$$
$$sum kt^k=tf'(t),$$
$$sum k^2t^{k-1}=(tf'(t)),$$
$$sum k^2t^k=t(tf'(t))',$$
$$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$
Hint:
$$sum t^k=f(t),$$
$$sum kt^{k-1}=f'(t),$$
$$sum kt^k=tf'(t),$$
$$sum k^2t^{k-1}=(tf'(t)),$$
$$sum k^2t^k=t(tf'(t))',$$
$$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$
answered 17 mins ago
Yves Daoust
123k668219
123k668219
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042344%2fevaluation-of-infinite-series-summation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Easier: Use partial fractions on the summand first, then sum.
– user10354138
1 hour ago