Stalks of the pushforward sheaf.
0
$begingroup$
I know that in general, the stalks of the pushforward of a sheaf need not be the same as the original stalk. That is, $(f_{*}mathcal{F})_{f(p)}=mathcal{F}_p$ is not true in general. But when $X subset Y$ and $f$ is the inclusion map, is it true that the above holds for $p in X$ and that the stalks are zero(or the terminal object) for points not in X? I am asking this because I was able to prove this for any subset, but in Hartshorne Chapter 2, exercise 19, he asks you to prove that this holds for closed subsets and that a different construction(denoted $f_{!}mathcal{F}$ ) gives these stalks for open subsets.
algebraic-geometry sheaf-theory
share | cite | improve this question
...