How to find bounds of integration in finding CDF of $XY$











up vote
1
down vote

favorite












Suppose you had $f_{X,Y}(x,y) = begin{cases}1/4,&0<X<2, 0 <Y<X^3 \0,& text{otherwise} end{cases}$



How would you find a CDF for $Z=XY$?



I know it's of the form



$$F_Z(z) = P(XY leq z) = iint_{{(x,y):xyleq z}}f_{X,Y}(x,y)~dx~dy$$



I'm just a bit unclear on how to set up the bounds of the integral.










share|cite|improve this question
























  • Draw a picture and divide the integral by x=1
    – GNUSupporter 8964民主女神 地下教會
    Nov 22 at 16:25















up vote
1
down vote

favorite












Suppose you had $f_{X,Y}(x,y) = begin{cases}1/4,&0<X<2, 0 <Y<X^3 \0,& text{otherwise} end{cases}$



How would you find a CDF for $Z=XY$?



I know it's of the form



$$F_Z(z) = P(XY leq z) = iint_{{(x,y):xyleq z}}f_{X,Y}(x,y)~dx~dy$$



I'm just a bit unclear on how to set up the bounds of the integral.










share|cite|improve this question
























  • Draw a picture and divide the integral by x=1
    – GNUSupporter 8964民主女神 地下教會
    Nov 22 at 16:25













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Suppose you had $f_{X,Y}(x,y) = begin{cases}1/4,&0<X<2, 0 <Y<X^3 \0,& text{otherwise} end{cases}$



How would you find a CDF for $Z=XY$?



I know it's of the form



$$F_Z(z) = P(XY leq z) = iint_{{(x,y):xyleq z}}f_{X,Y}(x,y)~dx~dy$$



I'm just a bit unclear on how to set up the bounds of the integral.










share|cite|improve this question















Suppose you had $f_{X,Y}(x,y) = begin{cases}1/4,&0<X<2, 0 <Y<X^3 \0,& text{otherwise} end{cases}$



How would you find a CDF for $Z=XY$?



I know it's of the form



$$F_Z(z) = P(XY leq z) = iint_{{(x,y):xyleq z}}f_{X,Y}(x,y)~dx~dy$$



I'm just a bit unclear on how to set up the bounds of the integral.







calculus probability integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 23 at 3:39









Math Lover

13.7k31435




13.7k31435










asked Nov 22 at 16:20









HumptyDumpty

33018




33018












  • Draw a picture and divide the integral by x=1
    – GNUSupporter 8964民主女神 地下教會
    Nov 22 at 16:25


















  • Draw a picture and divide the integral by x=1
    – GNUSupporter 8964民主女神 地下教會
    Nov 22 at 16:25
















Draw a picture and divide the integral by x=1
– GNUSupporter 8964民主女神 地下教會
Nov 22 at 16:25




Draw a picture and divide the integral by x=1
– GNUSupporter 8964民主女神 地下教會
Nov 22 at 16:25










2 Answers
2






active

oldest

votes

















up vote
2
down vote



accepted










Note that $Y<X^3$ and $XY<z implies Y<z/X$; i.e., $Y < min{X^3,z/X}$.



For $X^3<z/X$, or $X < z^{1/4}$, we have
$$Y < min{X^3,z/X} = X^3;$$
otherwise
$$Y < min{X^3,z/X} = z/X.$$
Consequently,



$$Pr{XY <z} = int_{0}^{z^{1/4}}int_{0}^{x^3}frac{1}{4}dy,dx + int_{z^{1/4}}^{2}int_{0}^{z/x}frac{1}{4}dy,dx,$$
where $0 < z < 16$.






share|cite|improve this answer





















  • I don't think I understand your use of min. What is min telling us about the limits?
    – HumptyDumpty
    Nov 22 at 16:50










  • @HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
    – Math Lover
    Nov 22 at 17:35










  • @HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
    – Graham Kemp
    Nov 22 at 22:54


















up vote
0
down vote













$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$

begin{align}
int_{0}^{2}{1 over 4}
{bracks{0 < z/x < x^{3}} over verts{x}},dd x & =
{1 over 4}bracks{z > 0}
int_{0}^{2}{bracks{x > z^{1/4}} over x},dd x
\[5mm] & =
{1 over 4}bracks{z > 0}bracks{z^{1/4} < 2}int_{z^{1/4}}^{2}
{dd xover x}
\[5mm] & =
{1 over 4}bracks{0 < z < 16}lnpars{2 over z^{1/4}}
end{align}



enter image description here






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009318%2fhow-to-find-bounds-of-integration-in-finding-cdf-of-xy%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted










    Note that $Y<X^3$ and $XY<z implies Y<z/X$; i.e., $Y < min{X^3,z/X}$.



    For $X^3<z/X$, or $X < z^{1/4}$, we have
    $$Y < min{X^3,z/X} = X^3;$$
    otherwise
    $$Y < min{X^3,z/X} = z/X.$$
    Consequently,



    $$Pr{XY <z} = int_{0}^{z^{1/4}}int_{0}^{x^3}frac{1}{4}dy,dx + int_{z^{1/4}}^{2}int_{0}^{z/x}frac{1}{4}dy,dx,$$
    where $0 < z < 16$.






    share|cite|improve this answer





















    • I don't think I understand your use of min. What is min telling us about the limits?
      – HumptyDumpty
      Nov 22 at 16:50










    • @HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
      – Math Lover
      Nov 22 at 17:35










    • @HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
      – Graham Kemp
      Nov 22 at 22:54















    up vote
    2
    down vote



    accepted










    Note that $Y<X^3$ and $XY<z implies Y<z/X$; i.e., $Y < min{X^3,z/X}$.



    For $X^3<z/X$, or $X < z^{1/4}$, we have
    $$Y < min{X^3,z/X} = X^3;$$
    otherwise
    $$Y < min{X^3,z/X} = z/X.$$
    Consequently,



    $$Pr{XY <z} = int_{0}^{z^{1/4}}int_{0}^{x^3}frac{1}{4}dy,dx + int_{z^{1/4}}^{2}int_{0}^{z/x}frac{1}{4}dy,dx,$$
    where $0 < z < 16$.






    share|cite|improve this answer





















    • I don't think I understand your use of min. What is min telling us about the limits?
      – HumptyDumpty
      Nov 22 at 16:50










    • @HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
      – Math Lover
      Nov 22 at 17:35










    • @HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
      – Graham Kemp
      Nov 22 at 22:54













    up vote
    2
    down vote



    accepted







    up vote
    2
    down vote



    accepted






    Note that $Y<X^3$ and $XY<z implies Y<z/X$; i.e., $Y < min{X^3,z/X}$.



    For $X^3<z/X$, or $X < z^{1/4}$, we have
    $$Y < min{X^3,z/X} = X^3;$$
    otherwise
    $$Y < min{X^3,z/X} = z/X.$$
    Consequently,



    $$Pr{XY <z} = int_{0}^{z^{1/4}}int_{0}^{x^3}frac{1}{4}dy,dx + int_{z^{1/4}}^{2}int_{0}^{z/x}frac{1}{4}dy,dx,$$
    where $0 < z < 16$.






    share|cite|improve this answer












    Note that $Y<X^3$ and $XY<z implies Y<z/X$; i.e., $Y < min{X^3,z/X}$.



    For $X^3<z/X$, or $X < z^{1/4}$, we have
    $$Y < min{X^3,z/X} = X^3;$$
    otherwise
    $$Y < min{X^3,z/X} = z/X.$$
    Consequently,



    $$Pr{XY <z} = int_{0}^{z^{1/4}}int_{0}^{x^3}frac{1}{4}dy,dx + int_{z^{1/4}}^{2}int_{0}^{z/x}frac{1}{4}dy,dx,$$
    where $0 < z < 16$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 22 at 16:38









    Math Lover

    13.7k31435




    13.7k31435












    • I don't think I understand your use of min. What is min telling us about the limits?
      – HumptyDumpty
      Nov 22 at 16:50










    • @HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
      – Math Lover
      Nov 22 at 17:35










    • @HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
      – Graham Kemp
      Nov 22 at 22:54


















    • I don't think I understand your use of min. What is min telling us about the limits?
      – HumptyDumpty
      Nov 22 at 16:50










    • @HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
      – Math Lover
      Nov 22 at 17:35










    • @HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
      – Graham Kemp
      Nov 22 at 22:54
















    I don't think I understand your use of min. What is min telling us about the limits?
    – HumptyDumpty
    Nov 22 at 16:50




    I don't think I understand your use of min. What is min telling us about the limits?
    – HumptyDumpty
    Nov 22 at 16:50












    @HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
    – Math Lover
    Nov 22 at 17:35




    @HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
    – Math Lover
    Nov 22 at 17:35












    @HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
    – Graham Kemp
    Nov 22 at 22:54




    @HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
    – Graham Kemp
    Nov 22 at 22:54










    up vote
    0
    down vote













    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$

    begin{align}
    int_{0}^{2}{1 over 4}
    {bracks{0 < z/x < x^{3}} over verts{x}},dd x & =
    {1 over 4}bracks{z > 0}
    int_{0}^{2}{bracks{x > z^{1/4}} over x},dd x
    \[5mm] & =
    {1 over 4}bracks{z > 0}bracks{z^{1/4} < 2}int_{z^{1/4}}^{2}
    {dd xover x}
    \[5mm] & =
    {1 over 4}bracks{0 < z < 16}lnpars{2 over z^{1/4}}
    end{align}



    enter image description here






    share|cite|improve this answer

























      up vote
      0
      down vote













      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{ic}{mathrm{i}}
      newcommand{mc}[1]{mathcal{#1}}
      newcommand{mrm}[1]{mathrm{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$

      begin{align}
      int_{0}^{2}{1 over 4}
      {bracks{0 < z/x < x^{3}} over verts{x}},dd x & =
      {1 over 4}bracks{z > 0}
      int_{0}^{2}{bracks{x > z^{1/4}} over x},dd x
      \[5mm] & =
      {1 over 4}bracks{z > 0}bracks{z^{1/4} < 2}int_{z^{1/4}}^{2}
      {dd xover x}
      \[5mm] & =
      {1 over 4}bracks{0 < z < 16}lnpars{2 over z^{1/4}}
      end{align}



      enter image description here






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$

        begin{align}
        int_{0}^{2}{1 over 4}
        {bracks{0 < z/x < x^{3}} over verts{x}},dd x & =
        {1 over 4}bracks{z > 0}
        int_{0}^{2}{bracks{x > z^{1/4}} over x},dd x
        \[5mm] & =
        {1 over 4}bracks{z > 0}bracks{z^{1/4} < 2}int_{z^{1/4}}^{2}
        {dd xover x}
        \[5mm] & =
        {1 over 4}bracks{0 < z < 16}lnpars{2 over z^{1/4}}
        end{align}



        enter image description here






        share|cite|improve this answer












        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$

        begin{align}
        int_{0}^{2}{1 over 4}
        {bracks{0 < z/x < x^{3}} over verts{x}},dd x & =
        {1 over 4}bracks{z > 0}
        int_{0}^{2}{bracks{x > z^{1/4}} over x},dd x
        \[5mm] & =
        {1 over 4}bracks{z > 0}bracks{z^{1/4} < 2}int_{z^{1/4}}^{2}
        {dd xover x}
        \[5mm] & =
        {1 over 4}bracks{0 < z < 16}lnpars{2 over z^{1/4}}
        end{align}



        enter image description here







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 22 at 20:23









        Felix Marin

        66.8k7107139




        66.8k7107139






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009318%2fhow-to-find-bounds-of-integration-in-finding-cdf-of-xy%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Quarter-circle Tiles

            build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

            Mont Emei