How to find bounds of integration in finding CDF of $XY$
up vote
1
down vote
favorite
Suppose you had $f_{X,Y}(x,y) = begin{cases}1/4,&0<X<2, 0 <Y<X^3 \0,& text{otherwise} end{cases}$
How would you find a CDF for $Z=XY$?
I know it's of the form
$$F_Z(z) = P(XY leq z) = iint_{{(x,y):xyleq z}}f_{X,Y}(x,y)~dx~dy$$
I'm just a bit unclear on how to set up the bounds of the integral.
calculus probability integration
add a comment |
up vote
1
down vote
favorite
Suppose you had $f_{X,Y}(x,y) = begin{cases}1/4,&0<X<2, 0 <Y<X^3 \0,& text{otherwise} end{cases}$
How would you find a CDF for $Z=XY$?
I know it's of the form
$$F_Z(z) = P(XY leq z) = iint_{{(x,y):xyleq z}}f_{X,Y}(x,y)~dx~dy$$
I'm just a bit unclear on how to set up the bounds of the integral.
calculus probability integration
Draw a picture and divide the integral by x=1
– GNUSupporter 8964民主女神 地下教會
Nov 22 at 16:25
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Suppose you had $f_{X,Y}(x,y) = begin{cases}1/4,&0<X<2, 0 <Y<X^3 \0,& text{otherwise} end{cases}$
How would you find a CDF for $Z=XY$?
I know it's of the form
$$F_Z(z) = P(XY leq z) = iint_{{(x,y):xyleq z}}f_{X,Y}(x,y)~dx~dy$$
I'm just a bit unclear on how to set up the bounds of the integral.
calculus probability integration
Suppose you had $f_{X,Y}(x,y) = begin{cases}1/4,&0<X<2, 0 <Y<X^3 \0,& text{otherwise} end{cases}$
How would you find a CDF for $Z=XY$?
I know it's of the form
$$F_Z(z) = P(XY leq z) = iint_{{(x,y):xyleq z}}f_{X,Y}(x,y)~dx~dy$$
I'm just a bit unclear on how to set up the bounds of the integral.
calculus probability integration
calculus probability integration
edited Nov 23 at 3:39
Math Lover
13.7k31435
13.7k31435
asked Nov 22 at 16:20
HumptyDumpty
33018
33018
Draw a picture and divide the integral by x=1
– GNUSupporter 8964民主女神 地下教會
Nov 22 at 16:25
add a comment |
Draw a picture and divide the integral by x=1
– GNUSupporter 8964民主女神 地下教會
Nov 22 at 16:25
Draw a picture and divide the integral by x=1
– GNUSupporter 8964民主女神 地下教會
Nov 22 at 16:25
Draw a picture and divide the integral by x=1
– GNUSupporter 8964民主女神 地下教會
Nov 22 at 16:25
add a comment |
2 Answers
2
active
oldest
votes
up vote
2
down vote
accepted
Note that $Y<X^3$ and $XY<z implies Y<z/X$; i.e., $Y < min{X^3,z/X}$.
For $X^3<z/X$, or $X < z^{1/4}$, we have
$$Y < min{X^3,z/X} = X^3;$$
otherwise
$$Y < min{X^3,z/X} = z/X.$$
Consequently,
$$Pr{XY <z} = int_{0}^{z^{1/4}}int_{0}^{x^3}frac{1}{4}dy,dx + int_{z^{1/4}}^{2}int_{0}^{z/x}frac{1}{4}dy,dx,$$
where $0 < z < 16$.
I don't think I understand your use of min. What is min telling us about the limits?
– HumptyDumpty
Nov 22 at 16:50
@HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
– Math Lover
Nov 22 at 17:35
@HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
– Graham Kemp
Nov 22 at 22:54
add a comment |
up vote
0
down vote
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
int_{0}^{2}{1 over 4}
{bracks{0 < z/x < x^{3}} over verts{x}},dd x & =
{1 over 4}bracks{z > 0}
int_{0}^{2}{bracks{x > z^{1/4}} over x},dd x
\[5mm] & =
{1 over 4}bracks{z > 0}bracks{z^{1/4} < 2}int_{z^{1/4}}^{2}
{dd xover x}
\[5mm] & =
{1 over 4}bracks{0 < z < 16}lnpars{2 over z^{1/4}}
end{align}
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009318%2fhow-to-find-bounds-of-integration-in-finding-cdf-of-xy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Note that $Y<X^3$ and $XY<z implies Y<z/X$; i.e., $Y < min{X^3,z/X}$.
For $X^3<z/X$, or $X < z^{1/4}$, we have
$$Y < min{X^3,z/X} = X^3;$$
otherwise
$$Y < min{X^3,z/X} = z/X.$$
Consequently,
$$Pr{XY <z} = int_{0}^{z^{1/4}}int_{0}^{x^3}frac{1}{4}dy,dx + int_{z^{1/4}}^{2}int_{0}^{z/x}frac{1}{4}dy,dx,$$
where $0 < z < 16$.
I don't think I understand your use of min. What is min telling us about the limits?
– HumptyDumpty
Nov 22 at 16:50
@HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
– Math Lover
Nov 22 at 17:35
@HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
– Graham Kemp
Nov 22 at 22:54
add a comment |
up vote
2
down vote
accepted
Note that $Y<X^3$ and $XY<z implies Y<z/X$; i.e., $Y < min{X^3,z/X}$.
For $X^3<z/X$, or $X < z^{1/4}$, we have
$$Y < min{X^3,z/X} = X^3;$$
otherwise
$$Y < min{X^3,z/X} = z/X.$$
Consequently,
$$Pr{XY <z} = int_{0}^{z^{1/4}}int_{0}^{x^3}frac{1}{4}dy,dx + int_{z^{1/4}}^{2}int_{0}^{z/x}frac{1}{4}dy,dx,$$
where $0 < z < 16$.
I don't think I understand your use of min. What is min telling us about the limits?
– HumptyDumpty
Nov 22 at 16:50
@HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
– Math Lover
Nov 22 at 17:35
@HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
– Graham Kemp
Nov 22 at 22:54
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Note that $Y<X^3$ and $XY<z implies Y<z/X$; i.e., $Y < min{X^3,z/X}$.
For $X^3<z/X$, or $X < z^{1/4}$, we have
$$Y < min{X^3,z/X} = X^3;$$
otherwise
$$Y < min{X^3,z/X} = z/X.$$
Consequently,
$$Pr{XY <z} = int_{0}^{z^{1/4}}int_{0}^{x^3}frac{1}{4}dy,dx + int_{z^{1/4}}^{2}int_{0}^{z/x}frac{1}{4}dy,dx,$$
where $0 < z < 16$.
Note that $Y<X^3$ and $XY<z implies Y<z/X$; i.e., $Y < min{X^3,z/X}$.
For $X^3<z/X$, or $X < z^{1/4}$, we have
$$Y < min{X^3,z/X} = X^3;$$
otherwise
$$Y < min{X^3,z/X} = z/X.$$
Consequently,
$$Pr{XY <z} = int_{0}^{z^{1/4}}int_{0}^{x^3}frac{1}{4}dy,dx + int_{z^{1/4}}^{2}int_{0}^{z/x}frac{1}{4}dy,dx,$$
where $0 < z < 16$.
answered Nov 22 at 16:38
Math Lover
13.7k31435
13.7k31435
I don't think I understand your use of min. What is min telling us about the limits?
– HumptyDumpty
Nov 22 at 16:50
@HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
– Math Lover
Nov 22 at 17:35
@HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
– Graham Kemp
Nov 22 at 22:54
add a comment |
I don't think I understand your use of min. What is min telling us about the limits?
– HumptyDumpty
Nov 22 at 16:50
@HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
– Math Lover
Nov 22 at 17:35
@HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
– Graham Kemp
Nov 22 at 22:54
I don't think I understand your use of min. What is min telling us about the limits?
– HumptyDumpty
Nov 22 at 16:50
I don't think I understand your use of min. What is min telling us about the limits?
– HumptyDumpty
Nov 22 at 16:50
@HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
– Math Lover
Nov 22 at 17:35
@HumptyDumpty Note that $Y < X^3$ and $Y < z/X$. For $X < z^{1/4}$, $X^3 < z/X$. Therefore, $Y < X^3< z/X$. So $0 < Y < X^3$ dictates the integration limits. Similar arguments can be used regarding other integration limits.
– Math Lover
Nov 22 at 17:35
@HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
– Graham Kemp
Nov 22 at 22:54
@HumptyDumpty If $Y< X^3$ and $Y<z/X$ then $Y<min{X^3,z/X}$. So $$mathsf P(XY<z)=int_0^2int_0^{min{x^3, z/x}} tfrac 14~mathsf dy~mathsf dx$$
– Graham Kemp
Nov 22 at 22:54
add a comment |
up vote
0
down vote
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
int_{0}^{2}{1 over 4}
{bracks{0 < z/x < x^{3}} over verts{x}},dd x & =
{1 over 4}bracks{z > 0}
int_{0}^{2}{bracks{x > z^{1/4}} over x},dd x
\[5mm] & =
{1 over 4}bracks{z > 0}bracks{z^{1/4} < 2}int_{z^{1/4}}^{2}
{dd xover x}
\[5mm] & =
{1 over 4}bracks{0 < z < 16}lnpars{2 over z^{1/4}}
end{align}
add a comment |
up vote
0
down vote
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
int_{0}^{2}{1 over 4}
{bracks{0 < z/x < x^{3}} over verts{x}},dd x & =
{1 over 4}bracks{z > 0}
int_{0}^{2}{bracks{x > z^{1/4}} over x},dd x
\[5mm] & =
{1 over 4}bracks{z > 0}bracks{z^{1/4} < 2}int_{z^{1/4}}^{2}
{dd xover x}
\[5mm] & =
{1 over 4}bracks{0 < z < 16}lnpars{2 over z^{1/4}}
end{align}
add a comment |
up vote
0
down vote
up vote
0
down vote
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
int_{0}^{2}{1 over 4}
{bracks{0 < z/x < x^{3}} over verts{x}},dd x & =
{1 over 4}bracks{z > 0}
int_{0}^{2}{bracks{x > z^{1/4}} over x},dd x
\[5mm] & =
{1 over 4}bracks{z > 0}bracks{z^{1/4} < 2}int_{z^{1/4}}^{2}
{dd xover x}
\[5mm] & =
{1 over 4}bracks{0 < z < 16}lnpars{2 over z^{1/4}}
end{align}
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
int_{0}^{2}{1 over 4}
{bracks{0 < z/x < x^{3}} over verts{x}},dd x & =
{1 over 4}bracks{z > 0}
int_{0}^{2}{bracks{x > z^{1/4}} over x},dd x
\[5mm] & =
{1 over 4}bracks{z > 0}bracks{z^{1/4} < 2}int_{z^{1/4}}^{2}
{dd xover x}
\[5mm] & =
{1 over 4}bracks{0 < z < 16}lnpars{2 over z^{1/4}}
end{align}
answered Nov 22 at 20:23
Felix Marin
66.8k7107139
66.8k7107139
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009318%2fhow-to-find-bounds-of-integration-in-finding-cdf-of-xy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Draw a picture and divide the integral by x=1
– GNUSupporter 8964民主女神 地下教會
Nov 22 at 16:25