$L^2$ norm of a PDE
up vote
1
down vote
favorite
Iam working on the following problem:
Let $Omega subseteq mathbb{R}^n$ and $v$ be the solution of $(-Delta+q-lambda)v=F$ on $Omega$ such that $q$ is bounded and $v=exp(-ax)u$ where $uin H_{0}^{1}(Omega)cap H^{2}(Omega)$
For a large $Xin mathbb{R}$, we define a cut-off function $chi_{X}$ on $Omega_{X}$:
$chi_{X}=begin{cases} 1 & text{on }[0,X-1]\ 1leqchi_{X}leq0 & text{on} (X-1,X)\
0 & text{on} [X,infty)end{cases}$
Iam trying to find $L^2(Omega_{X})$-norm of $(chi_{X}-1)(-Delta v)+(chi_{X}-1)(q-lambda)v$ ..
I startred by the following:
$|(chi_{X}-1)(-Delta v)+(chi_{X}-1)(q-lambda)v|^2_{L^2(Omega_{X})}=\ |(chi_{X}-1)(-Delta+q-lambda)v|^2_{L^2(Omega_{X})}=\ int_{Omega_{X}}(chi_{X}-1)^2((-Delta+q-lambda)v)^2$
Now Iam not sure how I can finish the calculation, I know $(chi_{X}-1)$ is bounded on $Omega_{X}$ hence
$ int_{Omega_{X}}(chi_{X}-1)^2((-Delta+q-lambda)v)^2= int_{Omega_{X}}|chi_{X}-1|^2((-Delta+q-lambda)v)^2leq C int_{Omega_{X}}((-Delta+q-lambda)v)^2$
Are these steps correct?
and how I can find the $L^2$ norm on $Omega_{X}$ for the laplacian term?
functional-analysis operator-theory norm
add a comment |
up vote
1
down vote
favorite
Iam working on the following problem:
Let $Omega subseteq mathbb{R}^n$ and $v$ be the solution of $(-Delta+q-lambda)v=F$ on $Omega$ such that $q$ is bounded and $v=exp(-ax)u$ where $uin H_{0}^{1}(Omega)cap H^{2}(Omega)$
For a large $Xin mathbb{R}$, we define a cut-off function $chi_{X}$ on $Omega_{X}$:
$chi_{X}=begin{cases} 1 & text{on }[0,X-1]\ 1leqchi_{X}leq0 & text{on} (X-1,X)\
0 & text{on} [X,infty)end{cases}$
Iam trying to find $L^2(Omega_{X})$-norm of $(chi_{X}-1)(-Delta v)+(chi_{X}-1)(q-lambda)v$ ..
I startred by the following:
$|(chi_{X}-1)(-Delta v)+(chi_{X}-1)(q-lambda)v|^2_{L^2(Omega_{X})}=\ |(chi_{X}-1)(-Delta+q-lambda)v|^2_{L^2(Omega_{X})}=\ int_{Omega_{X}}(chi_{X}-1)^2((-Delta+q-lambda)v)^2$
Now Iam not sure how I can finish the calculation, I know $(chi_{X}-1)$ is bounded on $Omega_{X}$ hence
$ int_{Omega_{X}}(chi_{X}-1)^2((-Delta+q-lambda)v)^2= int_{Omega_{X}}|chi_{X}-1|^2((-Delta+q-lambda)v)^2leq C int_{Omega_{X}}((-Delta+q-lambda)v)^2$
Are these steps correct?
and how I can find the $L^2$ norm on $Omega_{X}$ for the laplacian term?
functional-analysis operator-theory norm
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Iam working on the following problem:
Let $Omega subseteq mathbb{R}^n$ and $v$ be the solution of $(-Delta+q-lambda)v=F$ on $Omega$ such that $q$ is bounded and $v=exp(-ax)u$ where $uin H_{0}^{1}(Omega)cap H^{2}(Omega)$
For a large $Xin mathbb{R}$, we define a cut-off function $chi_{X}$ on $Omega_{X}$:
$chi_{X}=begin{cases} 1 & text{on }[0,X-1]\ 1leqchi_{X}leq0 & text{on} (X-1,X)\
0 & text{on} [X,infty)end{cases}$
Iam trying to find $L^2(Omega_{X})$-norm of $(chi_{X}-1)(-Delta v)+(chi_{X}-1)(q-lambda)v$ ..
I startred by the following:
$|(chi_{X}-1)(-Delta v)+(chi_{X}-1)(q-lambda)v|^2_{L^2(Omega_{X})}=\ |(chi_{X}-1)(-Delta+q-lambda)v|^2_{L^2(Omega_{X})}=\ int_{Omega_{X}}(chi_{X}-1)^2((-Delta+q-lambda)v)^2$
Now Iam not sure how I can finish the calculation, I know $(chi_{X}-1)$ is bounded on $Omega_{X}$ hence
$ int_{Omega_{X}}(chi_{X}-1)^2((-Delta+q-lambda)v)^2= int_{Omega_{X}}|chi_{X}-1|^2((-Delta+q-lambda)v)^2leq C int_{Omega_{X}}((-Delta+q-lambda)v)^2$
Are these steps correct?
and how I can find the $L^2$ norm on $Omega_{X}$ for the laplacian term?
functional-analysis operator-theory norm
Iam working on the following problem:
Let $Omega subseteq mathbb{R}^n$ and $v$ be the solution of $(-Delta+q-lambda)v=F$ on $Omega$ such that $q$ is bounded and $v=exp(-ax)u$ where $uin H_{0}^{1}(Omega)cap H^{2}(Omega)$
For a large $Xin mathbb{R}$, we define a cut-off function $chi_{X}$ on $Omega_{X}$:
$chi_{X}=begin{cases} 1 & text{on }[0,X-1]\ 1leqchi_{X}leq0 & text{on} (X-1,X)\
0 & text{on} [X,infty)end{cases}$
Iam trying to find $L^2(Omega_{X})$-norm of $(chi_{X}-1)(-Delta v)+(chi_{X}-1)(q-lambda)v$ ..
I startred by the following:
$|(chi_{X}-1)(-Delta v)+(chi_{X}-1)(q-lambda)v|^2_{L^2(Omega_{X})}=\ |(chi_{X}-1)(-Delta+q-lambda)v|^2_{L^2(Omega_{X})}=\ int_{Omega_{X}}(chi_{X}-1)^2((-Delta+q-lambda)v)^2$
Now Iam not sure how I can finish the calculation, I know $(chi_{X}-1)$ is bounded on $Omega_{X}$ hence
$ int_{Omega_{X}}(chi_{X}-1)^2((-Delta+q-lambda)v)^2= int_{Omega_{X}}|chi_{X}-1|^2((-Delta+q-lambda)v)^2leq C int_{Omega_{X}}((-Delta+q-lambda)v)^2$
Are these steps correct?
and how I can find the $L^2$ norm on $Omega_{X}$ for the laplacian term?
functional-analysis operator-theory norm
functional-analysis operator-theory norm
asked Nov 22 at 16:28
S.N.A
887
887
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009325%2fl2-norm-of-a-pde%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009325%2fl2-norm-of-a-pde%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown