Proof verification of $lim_{x to x_0} ( f(x) g(x) ) = km $ if $lim_{x to x_0}f(x) = k $ and $ lim_{x to x_0}...
up vote
2
down vote
favorite
Suppose $f: A subset mathbb{R} to mathbb{R} $ and $g: A subset mathbb{R} to mathbb{R} $ such that $f(x) to k$ and $g(x) to m$.
Let $epsilon > 0$ for some $epsilon in mathbb{R} $. Since $f(x) to k$ and $g(x) to m$, there are $delta_f$ and $delta_g$ such that $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$ and $$0 < |x - x_0| <delta_f Rightarrow |g(x) - m| < epsilon $$. Let $delta = min{delta_f, delta_g} $. Then we have: $$ 0 < |x - x_0| <delta Rightarrow |f(x) - k||g(x) - m| < epsilon^2 $$.
Observe now that, for any fixed $epsilon$, both $f$ and $g$ are limited in this $epsilon$-neighborhood of $x_0$. Therefore there are $L_f$ and $L_g$ (which depend on $epsilon$ too) such that $forall x (|f(x)| < L_f) land forall x (|g(x) < L_g)$, with $x in B_delta (x)backslash {x_0} subset A$.
We now expand the product $|f(x) - k||g(x) - m|$ (I will denote $f(x)$ by $f$, the same for $g(x)$, for the sake of my tired fingers):
$$(1): ; |fg -kg -mf +km|;$$ Let $ C = (L_g k + L_f m)$. Then:
$$(2): ; |fg - C/2 - C/2 +km| < epsilon + |C| $$
$$(3): ; |fg - C/2 - (C/2 -km)| < :...$$
Since $|a - b| ≥ |a|-|b|$,
$$(4): ; |fg - C/2| - |C/2 -km| <: ...$$
$$(5): ; |fg| - |C/2| - (|C/2| - |km|) <:...$$
$$(6): ; |fg|+|km| < epsilon + 2|C|$$
Since $|x| = |-x|$,
$$(7): ; |fg| + |-km| < epsilon + 2|C|$$
Since $|x + y| ≤ |x| + |y|$,
$$(8): ; |fg - km| < epsilon + 2|C|$$
Since each step respect the fact that the left side of the inequality is always decreasing, we conclude by $(8)$ that $fg to km$.
real-analysis limits proof-verification
add a comment |
up vote
2
down vote
favorite
Suppose $f: A subset mathbb{R} to mathbb{R} $ and $g: A subset mathbb{R} to mathbb{R} $ such that $f(x) to k$ and $g(x) to m$.
Let $epsilon > 0$ for some $epsilon in mathbb{R} $. Since $f(x) to k$ and $g(x) to m$, there are $delta_f$ and $delta_g$ such that $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$ and $$0 < |x - x_0| <delta_f Rightarrow |g(x) - m| < epsilon $$. Let $delta = min{delta_f, delta_g} $. Then we have: $$ 0 < |x - x_0| <delta Rightarrow |f(x) - k||g(x) - m| < epsilon^2 $$.
Observe now that, for any fixed $epsilon$, both $f$ and $g$ are limited in this $epsilon$-neighborhood of $x_0$. Therefore there are $L_f$ and $L_g$ (which depend on $epsilon$ too) such that $forall x (|f(x)| < L_f) land forall x (|g(x) < L_g)$, with $x in B_delta (x)backslash {x_0} subset A$.
We now expand the product $|f(x) - k||g(x) - m|$ (I will denote $f(x)$ by $f$, the same for $g(x)$, for the sake of my tired fingers):
$$(1): ; |fg -kg -mf +km|;$$ Let $ C = (L_g k + L_f m)$. Then:
$$(2): ; |fg - C/2 - C/2 +km| < epsilon + |C| $$
$$(3): ; |fg - C/2 - (C/2 -km)| < :...$$
Since $|a - b| ≥ |a|-|b|$,
$$(4): ; |fg - C/2| - |C/2 -km| <: ...$$
$$(5): ; |fg| - |C/2| - (|C/2| - |km|) <:...$$
$$(6): ; |fg|+|km| < epsilon + 2|C|$$
Since $|x| = |-x|$,
$$(7): ; |fg| + |-km| < epsilon + 2|C|$$
Since $|x + y| ≤ |x| + |y|$,
$$(8): ; |fg - km| < epsilon + 2|C|$$
Since each step respect the fact that the left side of the inequality is always decreasing, we conclude by $(8)$ that $fg to km$.
real-analysis limits proof-verification
What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
– mfl
Nov 22 at 17:54
sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
– izzorts
Nov 22 at 17:58
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Suppose $f: A subset mathbb{R} to mathbb{R} $ and $g: A subset mathbb{R} to mathbb{R} $ such that $f(x) to k$ and $g(x) to m$.
Let $epsilon > 0$ for some $epsilon in mathbb{R} $. Since $f(x) to k$ and $g(x) to m$, there are $delta_f$ and $delta_g$ such that $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$ and $$0 < |x - x_0| <delta_f Rightarrow |g(x) - m| < epsilon $$. Let $delta = min{delta_f, delta_g} $. Then we have: $$ 0 < |x - x_0| <delta Rightarrow |f(x) - k||g(x) - m| < epsilon^2 $$.
Observe now that, for any fixed $epsilon$, both $f$ and $g$ are limited in this $epsilon$-neighborhood of $x_0$. Therefore there are $L_f$ and $L_g$ (which depend on $epsilon$ too) such that $forall x (|f(x)| < L_f) land forall x (|g(x) < L_g)$, with $x in B_delta (x)backslash {x_0} subset A$.
We now expand the product $|f(x) - k||g(x) - m|$ (I will denote $f(x)$ by $f$, the same for $g(x)$, for the sake of my tired fingers):
$$(1): ; |fg -kg -mf +km|;$$ Let $ C = (L_g k + L_f m)$. Then:
$$(2): ; |fg - C/2 - C/2 +km| < epsilon + |C| $$
$$(3): ; |fg - C/2 - (C/2 -km)| < :...$$
Since $|a - b| ≥ |a|-|b|$,
$$(4): ; |fg - C/2| - |C/2 -km| <: ...$$
$$(5): ; |fg| - |C/2| - (|C/2| - |km|) <:...$$
$$(6): ; |fg|+|km| < epsilon + 2|C|$$
Since $|x| = |-x|$,
$$(7): ; |fg| + |-km| < epsilon + 2|C|$$
Since $|x + y| ≤ |x| + |y|$,
$$(8): ; |fg - km| < epsilon + 2|C|$$
Since each step respect the fact that the left side of the inequality is always decreasing, we conclude by $(8)$ that $fg to km$.
real-analysis limits proof-verification
Suppose $f: A subset mathbb{R} to mathbb{R} $ and $g: A subset mathbb{R} to mathbb{R} $ such that $f(x) to k$ and $g(x) to m$.
Let $epsilon > 0$ for some $epsilon in mathbb{R} $. Since $f(x) to k$ and $g(x) to m$, there are $delta_f$ and $delta_g$ such that $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$ and $$0 < |x - x_0| <delta_f Rightarrow |g(x) - m| < epsilon $$. Let $delta = min{delta_f, delta_g} $. Then we have: $$ 0 < |x - x_0| <delta Rightarrow |f(x) - k||g(x) - m| < epsilon^2 $$.
Observe now that, for any fixed $epsilon$, both $f$ and $g$ are limited in this $epsilon$-neighborhood of $x_0$. Therefore there are $L_f$ and $L_g$ (which depend on $epsilon$ too) such that $forall x (|f(x)| < L_f) land forall x (|g(x) < L_g)$, with $x in B_delta (x)backslash {x_0} subset A$.
We now expand the product $|f(x) - k||g(x) - m|$ (I will denote $f(x)$ by $f$, the same for $g(x)$, for the sake of my tired fingers):
$$(1): ; |fg -kg -mf +km|;$$ Let $ C = (L_g k + L_f m)$. Then:
$$(2): ; |fg - C/2 - C/2 +km| < epsilon + |C| $$
$$(3): ; |fg - C/2 - (C/2 -km)| < :...$$
Since $|a - b| ≥ |a|-|b|$,
$$(4): ; |fg - C/2| - |C/2 -km| <: ...$$
$$(5): ; |fg| - |C/2| - (|C/2| - |km|) <:...$$
$$(6): ; |fg|+|km| < epsilon + 2|C|$$
Since $|x| = |-x|$,
$$(7): ; |fg| + |-km| < epsilon + 2|C|$$
Since $|x + y| ≤ |x| + |y|$,
$$(8): ; |fg - km| < epsilon + 2|C|$$
Since each step respect the fact that the left side of the inequality is always decreasing, we conclude by $(8)$ that $fg to km$.
real-analysis limits proof-verification
real-analysis limits proof-verification
edited Nov 22 at 17:57
asked Nov 22 at 17:48
izzorts
13618
13618
What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
– mfl
Nov 22 at 17:54
sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
– izzorts
Nov 22 at 17:58
add a comment |
What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
– mfl
Nov 22 at 17:54
sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
– izzorts
Nov 22 at 17:58
What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
– mfl
Nov 22 at 17:54
What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
– mfl
Nov 22 at 17:54
sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
– izzorts
Nov 22 at 17:58
sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
– izzorts
Nov 22 at 17:58
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
Assume wlog $k,m> 0$, then we have that
- $|f(x)-k|<epsilon_1 iff 0<k-epsilon_1 le f(x) le k+epsilon_1$
- $|g(x)-m|<epsilon_2iff 0<m-epsilon_2 le g(x) le m+epsilon_2$
then
$$ (k-epsilon_1)(m-epsilon_2) le f(x)g(x) le (k+epsilon_1)(m+epsilon_2)$$
$$ km-kepsilon_2-mepsilon_1+epsilon_1epsilon_2 le f(x)g(x) le km+kepsilon_2+mepsilon_1+epsilon_1epsilon_2 $$
that is
$$|f(x)g(x)-km|le epsilon_3$$
with $epsilon_3=|kepsilon_2+mepsilon_1-epsilon_1epsilon_2|$.
add a comment |
up vote
1
down vote
For any $epsilon>0$ there exist $delta_f,delta_g>0$ such that
$$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$
$$0 < |x - x_0| <delta_g Rightarrow |g(x) - m| < epsilon$$
So, if we consider $delta=min{delta_f,delta_g}$ we have
$$0 < |x - x_0| <delta Rightarrow |f(x) - k| < epsilon $$
$$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilon$$
Now
begin{align}|f(x)g(x)-km| &=|f(x)g(x)-kg(x)+kg(x)-km|\ &le |f(x)g(x)-kg(x)|+|kg(x)-km|.end{align} Thus if $0 < |x - x_0| <delta$ then
$$|f(x)g(x)-km|le |g(x)||f(x)-k|+|k||g(x)-m|<epsilon(|k|+|g(x)|). $$
Since
$$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilonimplies |g(x)|<|m|+epsilon$$ we have
$$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+epsilon). $$ If we consider $epsilon<1$ it is
$$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+1)$$ and we are done.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009412%2fproof-verification-of-lim-x-to-x-0-fx-gx-km-if-lim-x-to-x-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Assume wlog $k,m> 0$, then we have that
- $|f(x)-k|<epsilon_1 iff 0<k-epsilon_1 le f(x) le k+epsilon_1$
- $|g(x)-m|<epsilon_2iff 0<m-epsilon_2 le g(x) le m+epsilon_2$
then
$$ (k-epsilon_1)(m-epsilon_2) le f(x)g(x) le (k+epsilon_1)(m+epsilon_2)$$
$$ km-kepsilon_2-mepsilon_1+epsilon_1epsilon_2 le f(x)g(x) le km+kepsilon_2+mepsilon_1+epsilon_1epsilon_2 $$
that is
$$|f(x)g(x)-km|le epsilon_3$$
with $epsilon_3=|kepsilon_2+mepsilon_1-epsilon_1epsilon_2|$.
add a comment |
up vote
1
down vote
Assume wlog $k,m> 0$, then we have that
- $|f(x)-k|<epsilon_1 iff 0<k-epsilon_1 le f(x) le k+epsilon_1$
- $|g(x)-m|<epsilon_2iff 0<m-epsilon_2 le g(x) le m+epsilon_2$
then
$$ (k-epsilon_1)(m-epsilon_2) le f(x)g(x) le (k+epsilon_1)(m+epsilon_2)$$
$$ km-kepsilon_2-mepsilon_1+epsilon_1epsilon_2 le f(x)g(x) le km+kepsilon_2+mepsilon_1+epsilon_1epsilon_2 $$
that is
$$|f(x)g(x)-km|le epsilon_3$$
with $epsilon_3=|kepsilon_2+mepsilon_1-epsilon_1epsilon_2|$.
add a comment |
up vote
1
down vote
up vote
1
down vote
Assume wlog $k,m> 0$, then we have that
- $|f(x)-k|<epsilon_1 iff 0<k-epsilon_1 le f(x) le k+epsilon_1$
- $|g(x)-m|<epsilon_2iff 0<m-epsilon_2 le g(x) le m+epsilon_2$
then
$$ (k-epsilon_1)(m-epsilon_2) le f(x)g(x) le (k+epsilon_1)(m+epsilon_2)$$
$$ km-kepsilon_2-mepsilon_1+epsilon_1epsilon_2 le f(x)g(x) le km+kepsilon_2+mepsilon_1+epsilon_1epsilon_2 $$
that is
$$|f(x)g(x)-km|le epsilon_3$$
with $epsilon_3=|kepsilon_2+mepsilon_1-epsilon_1epsilon_2|$.
Assume wlog $k,m> 0$, then we have that
- $|f(x)-k|<epsilon_1 iff 0<k-epsilon_1 le f(x) le k+epsilon_1$
- $|g(x)-m|<epsilon_2iff 0<m-epsilon_2 le g(x) le m+epsilon_2$
then
$$ (k-epsilon_1)(m-epsilon_2) le f(x)g(x) le (k+epsilon_1)(m+epsilon_2)$$
$$ km-kepsilon_2-mepsilon_1+epsilon_1epsilon_2 le f(x)g(x) le km+kepsilon_2+mepsilon_1+epsilon_1epsilon_2 $$
that is
$$|f(x)g(x)-km|le epsilon_3$$
with $epsilon_3=|kepsilon_2+mepsilon_1-epsilon_1epsilon_2|$.
edited Nov 22 at 18:06
answered Nov 22 at 18:01
gimusi
92.7k94495
92.7k94495
add a comment |
add a comment |
up vote
1
down vote
For any $epsilon>0$ there exist $delta_f,delta_g>0$ such that
$$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$
$$0 < |x - x_0| <delta_g Rightarrow |g(x) - m| < epsilon$$
So, if we consider $delta=min{delta_f,delta_g}$ we have
$$0 < |x - x_0| <delta Rightarrow |f(x) - k| < epsilon $$
$$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilon$$
Now
begin{align}|f(x)g(x)-km| &=|f(x)g(x)-kg(x)+kg(x)-km|\ &le |f(x)g(x)-kg(x)|+|kg(x)-km|.end{align} Thus if $0 < |x - x_0| <delta$ then
$$|f(x)g(x)-km|le |g(x)||f(x)-k|+|k||g(x)-m|<epsilon(|k|+|g(x)|). $$
Since
$$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilonimplies |g(x)|<|m|+epsilon$$ we have
$$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+epsilon). $$ If we consider $epsilon<1$ it is
$$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+1)$$ and we are done.
add a comment |
up vote
1
down vote
For any $epsilon>0$ there exist $delta_f,delta_g>0$ such that
$$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$
$$0 < |x - x_0| <delta_g Rightarrow |g(x) - m| < epsilon$$
So, if we consider $delta=min{delta_f,delta_g}$ we have
$$0 < |x - x_0| <delta Rightarrow |f(x) - k| < epsilon $$
$$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilon$$
Now
begin{align}|f(x)g(x)-km| &=|f(x)g(x)-kg(x)+kg(x)-km|\ &le |f(x)g(x)-kg(x)|+|kg(x)-km|.end{align} Thus if $0 < |x - x_0| <delta$ then
$$|f(x)g(x)-km|le |g(x)||f(x)-k|+|k||g(x)-m|<epsilon(|k|+|g(x)|). $$
Since
$$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilonimplies |g(x)|<|m|+epsilon$$ we have
$$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+epsilon). $$ If we consider $epsilon<1$ it is
$$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+1)$$ and we are done.
add a comment |
up vote
1
down vote
up vote
1
down vote
For any $epsilon>0$ there exist $delta_f,delta_g>0$ such that
$$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$
$$0 < |x - x_0| <delta_g Rightarrow |g(x) - m| < epsilon$$
So, if we consider $delta=min{delta_f,delta_g}$ we have
$$0 < |x - x_0| <delta Rightarrow |f(x) - k| < epsilon $$
$$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilon$$
Now
begin{align}|f(x)g(x)-km| &=|f(x)g(x)-kg(x)+kg(x)-km|\ &le |f(x)g(x)-kg(x)|+|kg(x)-km|.end{align} Thus if $0 < |x - x_0| <delta$ then
$$|f(x)g(x)-km|le |g(x)||f(x)-k|+|k||g(x)-m|<epsilon(|k|+|g(x)|). $$
Since
$$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilonimplies |g(x)|<|m|+epsilon$$ we have
$$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+epsilon). $$ If we consider $epsilon<1$ it is
$$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+1)$$ and we are done.
For any $epsilon>0$ there exist $delta_f,delta_g>0$ such that
$$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$
$$0 < |x - x_0| <delta_g Rightarrow |g(x) - m| < epsilon$$
So, if we consider $delta=min{delta_f,delta_g}$ we have
$$0 < |x - x_0| <delta Rightarrow |f(x) - k| < epsilon $$
$$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilon$$
Now
begin{align}|f(x)g(x)-km| &=|f(x)g(x)-kg(x)+kg(x)-km|\ &le |f(x)g(x)-kg(x)|+|kg(x)-km|.end{align} Thus if $0 < |x - x_0| <delta$ then
$$|f(x)g(x)-km|le |g(x)||f(x)-k|+|k||g(x)-m|<epsilon(|k|+|g(x)|). $$
Since
$$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilonimplies |g(x)|<|m|+epsilon$$ we have
$$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+epsilon). $$ If we consider $epsilon<1$ it is
$$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+1)$$ and we are done.
edited Nov 23 at 17:50
answered Nov 22 at 18:02
mfl
26k12141
26k12141
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009412%2fproof-verification-of-lim-x-to-x-0-fx-gx-km-if-lim-x-to-x-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
– mfl
Nov 22 at 17:54
sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
– izzorts
Nov 22 at 17:58