West Los Angeles College (also called West L.A. College or WLAC) is a two-year, public community college in the western Baldwin Hills, adjacent to Culver City in Los Angeles County, California.[2] The college uses a Culver City address.
WLAC is a part of the California Community Colleges System, in the Los Angeles Community College District (LACCD). It is fully accredited by the Accrediting Commission for Community and Junior Colleges of the Western Association of Schools and Colleges.[3] The school offers Associate's degrees, and 18 vocational-oriented programs in addition to 25 transfer programs. The college awards more than 600 degrees and certificates annually in 39 fields.
Beginning in the fall of 2016, WLAC became one of only 15 community colleges in the State of California approved to offer a bachelor's degree. The bachelor's degree given at WLAC is in Dental Hygiene.
Contents
1Athletics
2Notable alumni
3References[5]
4External links
Athletics
The Wildcats are members of the Western State Conference, the largest community college conference in the state of California. The teams were previously known as the "Hustling Oilers." WLAC fields teams in 10 intercollegiate sports, with five men's teams and five women's teams.
Men's:
Football
Baseball
Basketball
Cross Country
Track & Field
Women's:
Basketball
Soccer
Volleyball
Track & Field
Cross Country
Softball
The college athletic fields hosted Olympic events (the hammer throw, and track and field events) at the 1984 Los Angeles Olympic Games.
Notable alumni
Rashied Davis, former NFL wide receiver
Keyshawn Johnson, former NFL wide receiver
Warren Moon, NFL Hall of Fame quarterback
LaVar Ball, former basketball player (and football player), now businessman
Schoolboy Q (born 1986), rapper, also played on the football team[4]
Ryan Sherriff (born 1990), Major League Baseball pitcher
Jhené Aiko (born 1988), American Singer and Songwriter
Isaac Bruce, 1999 All-Pro Team wide receiver and 14-year Rams player, earned a Super Bowl Ring in 2000
Tre Capital (born 1995), American Rapper and Songwriter
R.F. Georgy,(born 1964). Egyptian American Author of such books as Notes from the Cafe and Absolution.
Pour une classification, voir Orthoptera (classification phylogénétique). Orthoptera Romalea guttata , Orthoptera Caelifera Classification Règne Animalia Embranchement Arthropoda Sous-embr. Hexapoda Classe Insecta Sous-classe Dicondylia Infra-classe Pterygota Division Neoptera Super-ordre Orthopterodea Ordre Orthoptera Latreille, 1793 Les orthoptères ou Orthoptera (du grec orthos , droit, et ptéron , aile) sont un ordre de la classe des insectes. Ces animaux se caractérisent par des ailes alignées avec le corps. On estime à 22 000 le nombre d'espèces présentes sur la planète. La grande majorité est phytophage (qui se nourrit de végétaux) bien que plusieurs espèces soient régulièrement prédatrices. Cet ordre est scindé en deux sous-ordres : les ensifères (grillons et sauterelles) et les caelifères (criquets). Sommaire 1 Distribution 2 Description 2.1 Morphologie 2.2 Régime alimentai...
Pour les articles homonymes, voir Ellipse. L'ellipse est le lieu des points dont la somme des distances à deux points fixes, dits foyers, est constante. Section du cône ou projection du cercle. En géométrie, une ellipse est une courbe plane fermée obtenue par l’intersection d’un cône de révolution avec un plan, à condition que celui-ci coupe l'axe de rotation du cône ou du cylindre : c'est une conique d'excentricité strictement comprise entre 0 et 1. On peut également la définir comme le lieu des points dont la somme des distances à deux points fixes, dits foyers, est constante (sa construction par la méthode du jardinier est très simple). Dans la vie courante, l’ellipse est la forme qu'on perçoit en regardant un cercle en perspective, ou la figure formée par l’ombre d'un disque sur une surface plane. On retrouve aussi, en première approximation [ 1 ] , des ellipses dans les trajectoires des corps célestes (planètes, comètes ou satellites arti...
up vote
0
down vote
favorite
I have $99$ identical square tiles, each with a quarter-circle drawn on it like this: [asy] size(1.5cm); draw(Arc((2,0),1,90,180),red+1); draw((0,0)--(2,0)--(2,2)--(0,2)--(0,0)); [/asy] When I arrange the tiles in a $9times 11$ rectangular grid, each with a random orientation, what is the expected value of the number of full circles I form? I think this problem has to do with finding the chance any given 2x2 square has a circle, but I can't find it.
expected-value
share | cite | improve this question
asked Nov 20 at 15:03
6minecraftninja
1 2
...