Calculating $sumlimits_{i=1}^{n-1}sumlimits_{j=1}^{m-1} |mi-nj|$
$begingroup$
I'd like to calculate $f(n,m)=sumlimits_{i=1}^{n-1}sumlimits_{j=1}^{m-1} |mi-nj|$ for all $1 leq n leq N, 1 leq m leq M$. Straightforward brute force method runs in $O(N^2M^2)$ which is too slow. How to calculate all values in $O(NM)$?
combinatorics summation algorithms closed-form computational-complexity
$endgroup$
add a comment |
$begingroup$
I'd like to calculate $f(n,m)=sumlimits_{i=1}^{n-1}sumlimits_{j=1}^{m-1} |mi-nj|$ for all $1 leq n leq N, 1 leq m leq M$. Straightforward brute force method runs in $O(N^2M^2)$ which is too slow. How to calculate all values in $O(NM)$?
combinatorics summation algorithms closed-form computational-complexity
$endgroup$
$begingroup$
When $i=kj$, for some $k in mathbb{N}$, the sum can be simplified. For instance, for $k=1$, one has the term $left(1+2+cdots + min(n-1,m-1)right)|m-n|$
$endgroup$
– Alex Silva
Nov 30 '18 at 9:33
$begingroup$
I have a hunch the Euclidean algorithm could help: try computing $fleft(n,mright)$ using $fleft(n,m-nright)$.
$endgroup$
– darij grinberg
Nov 30 '18 at 9:50
$begingroup$
I'd look for a closed formula. E.g., one has $f(n,n)={2over3} n^2 - n^3 + {1over3}n^4$
$endgroup$
– Christian Blatter
Nov 30 '18 at 11:15
$begingroup$
How can this computation be $O(N^2M^2)$ ??? There are exactly $NM$ terms in the summation. There is certainly an $O(1)$ formula.
$endgroup$
– Yves Daoust
Nov 30 '18 at 15:12
add a comment |
$begingroup$
I'd like to calculate $f(n,m)=sumlimits_{i=1}^{n-1}sumlimits_{j=1}^{m-1} |mi-nj|$ for all $1 leq n leq N, 1 leq m leq M$. Straightforward brute force method runs in $O(N^2M^2)$ which is too slow. How to calculate all values in $O(NM)$?
combinatorics summation algorithms closed-form computational-complexity
$endgroup$
I'd like to calculate $f(n,m)=sumlimits_{i=1}^{n-1}sumlimits_{j=1}^{m-1} |mi-nj|$ for all $1 leq n leq N, 1 leq m leq M$. Straightforward brute force method runs in $O(N^2M^2)$ which is too slow. How to calculate all values in $O(NM)$?
combinatorics summation algorithms closed-form computational-complexity
combinatorics summation algorithms closed-form computational-complexity
edited Dec 17 '18 at 1:02
Batominovski
1
1
asked Nov 30 '18 at 7:47
Hang WuHang Wu
416210
416210
$begingroup$
When $i=kj$, for some $k in mathbb{N}$, the sum can be simplified. For instance, for $k=1$, one has the term $left(1+2+cdots + min(n-1,m-1)right)|m-n|$
$endgroup$
– Alex Silva
Nov 30 '18 at 9:33
$begingroup$
I have a hunch the Euclidean algorithm could help: try computing $fleft(n,mright)$ using $fleft(n,m-nright)$.
$endgroup$
– darij grinberg
Nov 30 '18 at 9:50
$begingroup$
I'd look for a closed formula. E.g., one has $f(n,n)={2over3} n^2 - n^3 + {1over3}n^4$
$endgroup$
– Christian Blatter
Nov 30 '18 at 11:15
$begingroup$
How can this computation be $O(N^2M^2)$ ??? There are exactly $NM$ terms in the summation. There is certainly an $O(1)$ formula.
$endgroup$
– Yves Daoust
Nov 30 '18 at 15:12
add a comment |
$begingroup$
When $i=kj$, for some $k in mathbb{N}$, the sum can be simplified. For instance, for $k=1$, one has the term $left(1+2+cdots + min(n-1,m-1)right)|m-n|$
$endgroup$
– Alex Silva
Nov 30 '18 at 9:33
$begingroup$
I have a hunch the Euclidean algorithm could help: try computing $fleft(n,mright)$ using $fleft(n,m-nright)$.
$endgroup$
– darij grinberg
Nov 30 '18 at 9:50
$begingroup$
I'd look for a closed formula. E.g., one has $f(n,n)={2over3} n^2 - n^3 + {1over3}n^4$
$endgroup$
– Christian Blatter
Nov 30 '18 at 11:15
$begingroup$
How can this computation be $O(N^2M^2)$ ??? There are exactly $NM$ terms in the summation. There is certainly an $O(1)$ formula.
$endgroup$
– Yves Daoust
Nov 30 '18 at 15:12
$begingroup$
When $i=kj$, for some $k in mathbb{N}$, the sum can be simplified. For instance, for $k=1$, one has the term $left(1+2+cdots + min(n-1,m-1)right)|m-n|$
$endgroup$
– Alex Silva
Nov 30 '18 at 9:33
$begingroup$
When $i=kj$, for some $k in mathbb{N}$, the sum can be simplified. For instance, for $k=1$, one has the term $left(1+2+cdots + min(n-1,m-1)right)|m-n|$
$endgroup$
– Alex Silva
Nov 30 '18 at 9:33
$begingroup$
I have a hunch the Euclidean algorithm could help: try computing $fleft(n,mright)$ using $fleft(n,m-nright)$.
$endgroup$
– darij grinberg
Nov 30 '18 at 9:50
$begingroup$
I have a hunch the Euclidean algorithm could help: try computing $fleft(n,mright)$ using $fleft(n,m-nright)$.
$endgroup$
– darij grinberg
Nov 30 '18 at 9:50
$begingroup$
I'd look for a closed formula. E.g., one has $f(n,n)={2over3} n^2 - n^3 + {1over3}n^4$
$endgroup$
– Christian Blatter
Nov 30 '18 at 11:15
$begingroup$
I'd look for a closed formula. E.g., one has $f(n,n)={2over3} n^2 - n^3 + {1over3}n^4$
$endgroup$
– Christian Blatter
Nov 30 '18 at 11:15
$begingroup$
How can this computation be $O(N^2M^2)$ ??? There are exactly $NM$ terms in the summation. There is certainly an $O(1)$ formula.
$endgroup$
– Yves Daoust
Nov 30 '18 at 15:12
$begingroup$
How can this computation be $O(N^2M^2)$ ??? There are exactly $NM$ terms in the summation. There is certainly an $O(1)$ formula.
$endgroup$
– Yves Daoust
Nov 30 '18 at 15:12
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We show the following is valid for positive integers $n,m$:
begin{align*}
sum_{i=1}^{n-1}sum_{j=1}^{m-1}|mi-nj|=frac{1}{6}left(2m^2n^2-3m^2n+m^2-3mn^2+3mn+n^2-left(gcd(m,n)right)^2right)
end{align*}
In the following we denote with $d=gcd(m,n)$.
We obtain
begin{align*}
color{blue}{sum_{i=1}^{n-1}}&color{blue}{sum_{j=1}^{m-1}|mi-nj|}tag{2}\
&=2sum_{i=1}^{n-1}sum_{j=1}^{lfloor mi/nrfloor}(mi-nj)tag{3}\
&=2msum_{i=1}^{n-1}isum_{j=1}^{lfloor mi/nrfloor}1-2nsum_{i=1}^{n-1}sum_{j=1}^{lfloor mi/nrfloor}j\
&=2msum_{i=1}^{n-1}ileftlfloorfrac{m}{n}irightrfloor
-nsum_{i=1}^{n-1}leftlfloorfrac{m}{n}irightrfloorleft(leftlfloorfrac{m}{n}irightrfloor+1right)tag{4}\
&=sum_{i=1}^{n-1}left(2mi-nleftlfloorfrac{m}{n}irightrfloor-nright)leftlfloorfrac{m}{n}irightrfloortag{5}\
&=sum_{i=1}^{n-1}left(2mi-nleft(frac{m}{n}i-left{frac{m}{n}iright}right)-nright)left(frac{m}{n}i-left{frac{m}{n}iright}right)tag{6}\
&=nsum_{i=1}^{n-1}left(frac{m^2}{n^2}i^2-left{frac{m}{n}iright}^2-frac{m}{n}i+left{frac{m}{n}iright}right)\
&=frac{m^2}{n}sum_{i=1}^{n-1}i^2-nsum_{i=1}^{n-1}left{frac{m}{n}iright}^2-msum_{i=1}^{n-1}i+nsum_{i=1}^{n-1}left{frac{m}{n}iright}\
&=frac{m^2}{n}frac{1}{6}(n-1)n(2n-1)-ndsum_{i=0}^{n/d-1}left(frac{d}{n}iright)^2\
&qquad -mfrac{1}{2}(n-1)n+ndsum_{i=0}^{n/d-1}left(frac{d}{n}iright)tag{7}\
&=frac{1}{6}m^2(n-1)(2n-1)-frac{d^3}{n}frac{1}{6}left(frac{n}{d}-1right)frac{n}{d}left(frac{2n}{d}-1right)\
&qquad-frac{1}{2}mn(n-1)+d^2frac{1}{2}left(frac{n}{d}-1right)frac{n}{d}tag{8}\
&,,color{blue}{=frac{1}{6}left(2m^2n^2-3m^2n+m^2-3mn^2+3mn+n^2-d^2right)}
end{align*}
and the claim (1) follows.
Comment:
In (3) we use that positive and negative parts in (2) correspond to each other.
In (4) we expand the inner sums.
In (5) we rearrange the terms and factor out $leftlfloorfrac{m}{n}irightrfloor$.
In (6) we rewrite the expression using the fractional part ${x}=x-lfloor xrfloor$ of $x$.
In (7) we expand the sums with linear and quadratic terms and we apply the identity
begin{align*}
sum_{i=1}^{n}fleft(left{frac{m}{n}iright}right)=dsum_{i=0}^{n/d-1}fleft(frac{d}{n}iright)
end{align*}
where $d=gcd(m,n)$.In (8) we expand the sums and simplify the expression in the final step.
$endgroup$
add a comment |
$begingroup$
Given $n$ and $mgeq n$ you can determine the numbers
$$r_{nm}(j):=leftlfloor{m jover n}rightrfloorqquad(1leq jleq n-1)$$in $O(n)$ steps, and another $O(n)$ steps then compute
$$f(n,m)=sum_{j=1}^{n-1}r_{nm}(j)bigl(2 m j-n(r_{nm}(j)+1)bigr) .tag{1}$$
One arrives at this formula after observing that by symmetry it is sufficient to consider the lattice points $(j,k)$ below the line $y={mover n}x$. Look at these lattice points on the ordinate $x=j$. Their $y$-coordinates $k$ run through the set $[r_{nm}(j)]$. The"integrand" $p(j,k):=|m j-n k|=mj -n k$ produces an arithmetic progression on these lattice points. Therefore the sum of the $p$-values along the ordinate $x=j$ is their number $r_{nm}(j)$, times the arithmetic mean of the first and the last $p$-values. This leads to formula $(1)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019794%2fcalculating-sum-limits-i-1n-1-sum-limits-j-1m-1-mi-nj%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We show the following is valid for positive integers $n,m$:
begin{align*}
sum_{i=1}^{n-1}sum_{j=1}^{m-1}|mi-nj|=frac{1}{6}left(2m^2n^2-3m^2n+m^2-3mn^2+3mn+n^2-left(gcd(m,n)right)^2right)
end{align*}
In the following we denote with $d=gcd(m,n)$.
We obtain
begin{align*}
color{blue}{sum_{i=1}^{n-1}}&color{blue}{sum_{j=1}^{m-1}|mi-nj|}tag{2}\
&=2sum_{i=1}^{n-1}sum_{j=1}^{lfloor mi/nrfloor}(mi-nj)tag{3}\
&=2msum_{i=1}^{n-1}isum_{j=1}^{lfloor mi/nrfloor}1-2nsum_{i=1}^{n-1}sum_{j=1}^{lfloor mi/nrfloor}j\
&=2msum_{i=1}^{n-1}ileftlfloorfrac{m}{n}irightrfloor
-nsum_{i=1}^{n-1}leftlfloorfrac{m}{n}irightrfloorleft(leftlfloorfrac{m}{n}irightrfloor+1right)tag{4}\
&=sum_{i=1}^{n-1}left(2mi-nleftlfloorfrac{m}{n}irightrfloor-nright)leftlfloorfrac{m}{n}irightrfloortag{5}\
&=sum_{i=1}^{n-1}left(2mi-nleft(frac{m}{n}i-left{frac{m}{n}iright}right)-nright)left(frac{m}{n}i-left{frac{m}{n}iright}right)tag{6}\
&=nsum_{i=1}^{n-1}left(frac{m^2}{n^2}i^2-left{frac{m}{n}iright}^2-frac{m}{n}i+left{frac{m}{n}iright}right)\
&=frac{m^2}{n}sum_{i=1}^{n-1}i^2-nsum_{i=1}^{n-1}left{frac{m}{n}iright}^2-msum_{i=1}^{n-1}i+nsum_{i=1}^{n-1}left{frac{m}{n}iright}\
&=frac{m^2}{n}frac{1}{6}(n-1)n(2n-1)-ndsum_{i=0}^{n/d-1}left(frac{d}{n}iright)^2\
&qquad -mfrac{1}{2}(n-1)n+ndsum_{i=0}^{n/d-1}left(frac{d}{n}iright)tag{7}\
&=frac{1}{6}m^2(n-1)(2n-1)-frac{d^3}{n}frac{1}{6}left(frac{n}{d}-1right)frac{n}{d}left(frac{2n}{d}-1right)\
&qquad-frac{1}{2}mn(n-1)+d^2frac{1}{2}left(frac{n}{d}-1right)frac{n}{d}tag{8}\
&,,color{blue}{=frac{1}{6}left(2m^2n^2-3m^2n+m^2-3mn^2+3mn+n^2-d^2right)}
end{align*}
and the claim (1) follows.
Comment:
In (3) we use that positive and negative parts in (2) correspond to each other.
In (4) we expand the inner sums.
In (5) we rearrange the terms and factor out $leftlfloorfrac{m}{n}irightrfloor$.
In (6) we rewrite the expression using the fractional part ${x}=x-lfloor xrfloor$ of $x$.
In (7) we expand the sums with linear and quadratic terms and we apply the identity
begin{align*}
sum_{i=1}^{n}fleft(left{frac{m}{n}iright}right)=dsum_{i=0}^{n/d-1}fleft(frac{d}{n}iright)
end{align*}
where $d=gcd(m,n)$.In (8) we expand the sums and simplify the expression in the final step.
$endgroup$
add a comment |
$begingroup$
We show the following is valid for positive integers $n,m$:
begin{align*}
sum_{i=1}^{n-1}sum_{j=1}^{m-1}|mi-nj|=frac{1}{6}left(2m^2n^2-3m^2n+m^2-3mn^2+3mn+n^2-left(gcd(m,n)right)^2right)
end{align*}
In the following we denote with $d=gcd(m,n)$.
We obtain
begin{align*}
color{blue}{sum_{i=1}^{n-1}}&color{blue}{sum_{j=1}^{m-1}|mi-nj|}tag{2}\
&=2sum_{i=1}^{n-1}sum_{j=1}^{lfloor mi/nrfloor}(mi-nj)tag{3}\
&=2msum_{i=1}^{n-1}isum_{j=1}^{lfloor mi/nrfloor}1-2nsum_{i=1}^{n-1}sum_{j=1}^{lfloor mi/nrfloor}j\
&=2msum_{i=1}^{n-1}ileftlfloorfrac{m}{n}irightrfloor
-nsum_{i=1}^{n-1}leftlfloorfrac{m}{n}irightrfloorleft(leftlfloorfrac{m}{n}irightrfloor+1right)tag{4}\
&=sum_{i=1}^{n-1}left(2mi-nleftlfloorfrac{m}{n}irightrfloor-nright)leftlfloorfrac{m}{n}irightrfloortag{5}\
&=sum_{i=1}^{n-1}left(2mi-nleft(frac{m}{n}i-left{frac{m}{n}iright}right)-nright)left(frac{m}{n}i-left{frac{m}{n}iright}right)tag{6}\
&=nsum_{i=1}^{n-1}left(frac{m^2}{n^2}i^2-left{frac{m}{n}iright}^2-frac{m}{n}i+left{frac{m}{n}iright}right)\
&=frac{m^2}{n}sum_{i=1}^{n-1}i^2-nsum_{i=1}^{n-1}left{frac{m}{n}iright}^2-msum_{i=1}^{n-1}i+nsum_{i=1}^{n-1}left{frac{m}{n}iright}\
&=frac{m^2}{n}frac{1}{6}(n-1)n(2n-1)-ndsum_{i=0}^{n/d-1}left(frac{d}{n}iright)^2\
&qquad -mfrac{1}{2}(n-1)n+ndsum_{i=0}^{n/d-1}left(frac{d}{n}iright)tag{7}\
&=frac{1}{6}m^2(n-1)(2n-1)-frac{d^3}{n}frac{1}{6}left(frac{n}{d}-1right)frac{n}{d}left(frac{2n}{d}-1right)\
&qquad-frac{1}{2}mn(n-1)+d^2frac{1}{2}left(frac{n}{d}-1right)frac{n}{d}tag{8}\
&,,color{blue}{=frac{1}{6}left(2m^2n^2-3m^2n+m^2-3mn^2+3mn+n^2-d^2right)}
end{align*}
and the claim (1) follows.
Comment:
In (3) we use that positive and negative parts in (2) correspond to each other.
In (4) we expand the inner sums.
In (5) we rearrange the terms and factor out $leftlfloorfrac{m}{n}irightrfloor$.
In (6) we rewrite the expression using the fractional part ${x}=x-lfloor xrfloor$ of $x$.
In (7) we expand the sums with linear and quadratic terms and we apply the identity
begin{align*}
sum_{i=1}^{n}fleft(left{frac{m}{n}iright}right)=dsum_{i=0}^{n/d-1}fleft(frac{d}{n}iright)
end{align*}
where $d=gcd(m,n)$.In (8) we expand the sums and simplify the expression in the final step.
$endgroup$
add a comment |
$begingroup$
We show the following is valid for positive integers $n,m$:
begin{align*}
sum_{i=1}^{n-1}sum_{j=1}^{m-1}|mi-nj|=frac{1}{6}left(2m^2n^2-3m^2n+m^2-3mn^2+3mn+n^2-left(gcd(m,n)right)^2right)
end{align*}
In the following we denote with $d=gcd(m,n)$.
We obtain
begin{align*}
color{blue}{sum_{i=1}^{n-1}}&color{blue}{sum_{j=1}^{m-1}|mi-nj|}tag{2}\
&=2sum_{i=1}^{n-1}sum_{j=1}^{lfloor mi/nrfloor}(mi-nj)tag{3}\
&=2msum_{i=1}^{n-1}isum_{j=1}^{lfloor mi/nrfloor}1-2nsum_{i=1}^{n-1}sum_{j=1}^{lfloor mi/nrfloor}j\
&=2msum_{i=1}^{n-1}ileftlfloorfrac{m}{n}irightrfloor
-nsum_{i=1}^{n-1}leftlfloorfrac{m}{n}irightrfloorleft(leftlfloorfrac{m}{n}irightrfloor+1right)tag{4}\
&=sum_{i=1}^{n-1}left(2mi-nleftlfloorfrac{m}{n}irightrfloor-nright)leftlfloorfrac{m}{n}irightrfloortag{5}\
&=sum_{i=1}^{n-1}left(2mi-nleft(frac{m}{n}i-left{frac{m}{n}iright}right)-nright)left(frac{m}{n}i-left{frac{m}{n}iright}right)tag{6}\
&=nsum_{i=1}^{n-1}left(frac{m^2}{n^2}i^2-left{frac{m}{n}iright}^2-frac{m}{n}i+left{frac{m}{n}iright}right)\
&=frac{m^2}{n}sum_{i=1}^{n-1}i^2-nsum_{i=1}^{n-1}left{frac{m}{n}iright}^2-msum_{i=1}^{n-1}i+nsum_{i=1}^{n-1}left{frac{m}{n}iright}\
&=frac{m^2}{n}frac{1}{6}(n-1)n(2n-1)-ndsum_{i=0}^{n/d-1}left(frac{d}{n}iright)^2\
&qquad -mfrac{1}{2}(n-1)n+ndsum_{i=0}^{n/d-1}left(frac{d}{n}iright)tag{7}\
&=frac{1}{6}m^2(n-1)(2n-1)-frac{d^3}{n}frac{1}{6}left(frac{n}{d}-1right)frac{n}{d}left(frac{2n}{d}-1right)\
&qquad-frac{1}{2}mn(n-1)+d^2frac{1}{2}left(frac{n}{d}-1right)frac{n}{d}tag{8}\
&,,color{blue}{=frac{1}{6}left(2m^2n^2-3m^2n+m^2-3mn^2+3mn+n^2-d^2right)}
end{align*}
and the claim (1) follows.
Comment:
In (3) we use that positive and negative parts in (2) correspond to each other.
In (4) we expand the inner sums.
In (5) we rearrange the terms and factor out $leftlfloorfrac{m}{n}irightrfloor$.
In (6) we rewrite the expression using the fractional part ${x}=x-lfloor xrfloor$ of $x$.
In (7) we expand the sums with linear and quadratic terms and we apply the identity
begin{align*}
sum_{i=1}^{n}fleft(left{frac{m}{n}iright}right)=dsum_{i=0}^{n/d-1}fleft(frac{d}{n}iright)
end{align*}
where $d=gcd(m,n)$.In (8) we expand the sums and simplify the expression in the final step.
$endgroup$
We show the following is valid for positive integers $n,m$:
begin{align*}
sum_{i=1}^{n-1}sum_{j=1}^{m-1}|mi-nj|=frac{1}{6}left(2m^2n^2-3m^2n+m^2-3mn^2+3mn+n^2-left(gcd(m,n)right)^2right)
end{align*}
In the following we denote with $d=gcd(m,n)$.
We obtain
begin{align*}
color{blue}{sum_{i=1}^{n-1}}&color{blue}{sum_{j=1}^{m-1}|mi-nj|}tag{2}\
&=2sum_{i=1}^{n-1}sum_{j=1}^{lfloor mi/nrfloor}(mi-nj)tag{3}\
&=2msum_{i=1}^{n-1}isum_{j=1}^{lfloor mi/nrfloor}1-2nsum_{i=1}^{n-1}sum_{j=1}^{lfloor mi/nrfloor}j\
&=2msum_{i=1}^{n-1}ileftlfloorfrac{m}{n}irightrfloor
-nsum_{i=1}^{n-1}leftlfloorfrac{m}{n}irightrfloorleft(leftlfloorfrac{m}{n}irightrfloor+1right)tag{4}\
&=sum_{i=1}^{n-1}left(2mi-nleftlfloorfrac{m}{n}irightrfloor-nright)leftlfloorfrac{m}{n}irightrfloortag{5}\
&=sum_{i=1}^{n-1}left(2mi-nleft(frac{m}{n}i-left{frac{m}{n}iright}right)-nright)left(frac{m}{n}i-left{frac{m}{n}iright}right)tag{6}\
&=nsum_{i=1}^{n-1}left(frac{m^2}{n^2}i^2-left{frac{m}{n}iright}^2-frac{m}{n}i+left{frac{m}{n}iright}right)\
&=frac{m^2}{n}sum_{i=1}^{n-1}i^2-nsum_{i=1}^{n-1}left{frac{m}{n}iright}^2-msum_{i=1}^{n-1}i+nsum_{i=1}^{n-1}left{frac{m}{n}iright}\
&=frac{m^2}{n}frac{1}{6}(n-1)n(2n-1)-ndsum_{i=0}^{n/d-1}left(frac{d}{n}iright)^2\
&qquad -mfrac{1}{2}(n-1)n+ndsum_{i=0}^{n/d-1}left(frac{d}{n}iright)tag{7}\
&=frac{1}{6}m^2(n-1)(2n-1)-frac{d^3}{n}frac{1}{6}left(frac{n}{d}-1right)frac{n}{d}left(frac{2n}{d}-1right)\
&qquad-frac{1}{2}mn(n-1)+d^2frac{1}{2}left(frac{n}{d}-1right)frac{n}{d}tag{8}\
&,,color{blue}{=frac{1}{6}left(2m^2n^2-3m^2n+m^2-3mn^2+3mn+n^2-d^2right)}
end{align*}
and the claim (1) follows.
Comment:
In (3) we use that positive and negative parts in (2) correspond to each other.
In (4) we expand the inner sums.
In (5) we rearrange the terms and factor out $leftlfloorfrac{m}{n}irightrfloor$.
In (6) we rewrite the expression using the fractional part ${x}=x-lfloor xrfloor$ of $x$.
In (7) we expand the sums with linear and quadratic terms and we apply the identity
begin{align*}
sum_{i=1}^{n}fleft(left{frac{m}{n}iright}right)=dsum_{i=0}^{n/d-1}fleft(frac{d}{n}iright)
end{align*}
where $d=gcd(m,n)$.In (8) we expand the sums and simplify the expression in the final step.
edited Dec 17 '18 at 7:35
answered Dec 16 '18 at 22:31
Markus ScheuerMarkus Scheuer
60.4k455144
60.4k455144
add a comment |
add a comment |
$begingroup$
Given $n$ and $mgeq n$ you can determine the numbers
$$r_{nm}(j):=leftlfloor{m jover n}rightrfloorqquad(1leq jleq n-1)$$in $O(n)$ steps, and another $O(n)$ steps then compute
$$f(n,m)=sum_{j=1}^{n-1}r_{nm}(j)bigl(2 m j-n(r_{nm}(j)+1)bigr) .tag{1}$$
One arrives at this formula after observing that by symmetry it is sufficient to consider the lattice points $(j,k)$ below the line $y={mover n}x$. Look at these lattice points on the ordinate $x=j$. Their $y$-coordinates $k$ run through the set $[r_{nm}(j)]$. The"integrand" $p(j,k):=|m j-n k|=mj -n k$ produces an arithmetic progression on these lattice points. Therefore the sum of the $p$-values along the ordinate $x=j$ is their number $r_{nm}(j)$, times the arithmetic mean of the first and the last $p$-values. This leads to formula $(1)$.
$endgroup$
add a comment |
$begingroup$
Given $n$ and $mgeq n$ you can determine the numbers
$$r_{nm}(j):=leftlfloor{m jover n}rightrfloorqquad(1leq jleq n-1)$$in $O(n)$ steps, and another $O(n)$ steps then compute
$$f(n,m)=sum_{j=1}^{n-1}r_{nm}(j)bigl(2 m j-n(r_{nm}(j)+1)bigr) .tag{1}$$
One arrives at this formula after observing that by symmetry it is sufficient to consider the lattice points $(j,k)$ below the line $y={mover n}x$. Look at these lattice points on the ordinate $x=j$. Their $y$-coordinates $k$ run through the set $[r_{nm}(j)]$. The"integrand" $p(j,k):=|m j-n k|=mj -n k$ produces an arithmetic progression on these lattice points. Therefore the sum of the $p$-values along the ordinate $x=j$ is their number $r_{nm}(j)$, times the arithmetic mean of the first and the last $p$-values. This leads to formula $(1)$.
$endgroup$
add a comment |
$begingroup$
Given $n$ and $mgeq n$ you can determine the numbers
$$r_{nm}(j):=leftlfloor{m jover n}rightrfloorqquad(1leq jleq n-1)$$in $O(n)$ steps, and another $O(n)$ steps then compute
$$f(n,m)=sum_{j=1}^{n-1}r_{nm}(j)bigl(2 m j-n(r_{nm}(j)+1)bigr) .tag{1}$$
One arrives at this formula after observing that by symmetry it is sufficient to consider the lattice points $(j,k)$ below the line $y={mover n}x$. Look at these lattice points on the ordinate $x=j$. Their $y$-coordinates $k$ run through the set $[r_{nm}(j)]$. The"integrand" $p(j,k):=|m j-n k|=mj -n k$ produces an arithmetic progression on these lattice points. Therefore the sum of the $p$-values along the ordinate $x=j$ is their number $r_{nm}(j)$, times the arithmetic mean of the first and the last $p$-values. This leads to formula $(1)$.
$endgroup$
Given $n$ and $mgeq n$ you can determine the numbers
$$r_{nm}(j):=leftlfloor{m jover n}rightrfloorqquad(1leq jleq n-1)$$in $O(n)$ steps, and another $O(n)$ steps then compute
$$f(n,m)=sum_{j=1}^{n-1}r_{nm}(j)bigl(2 m j-n(r_{nm}(j)+1)bigr) .tag{1}$$
One arrives at this formula after observing that by symmetry it is sufficient to consider the lattice points $(j,k)$ below the line $y={mover n}x$. Look at these lattice points on the ordinate $x=j$. Their $y$-coordinates $k$ run through the set $[r_{nm}(j)]$. The"integrand" $p(j,k):=|m j-n k|=mj -n k$ produces an arithmetic progression on these lattice points. Therefore the sum of the $p$-values along the ordinate $x=j$ is their number $r_{nm}(j)$, times the arithmetic mean of the first and the last $p$-values. This leads to formula $(1)$.
answered Nov 30 '18 at 14:23
Christian BlatterChristian Blatter
172k7113326
172k7113326
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019794%2fcalculating-sum-limits-i-1n-1-sum-limits-j-1m-1-mi-nj%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
When $i=kj$, for some $k in mathbb{N}$, the sum can be simplified. For instance, for $k=1$, one has the term $left(1+2+cdots + min(n-1,m-1)right)|m-n|$
$endgroup$
– Alex Silva
Nov 30 '18 at 9:33
$begingroup$
I have a hunch the Euclidean algorithm could help: try computing $fleft(n,mright)$ using $fleft(n,m-nright)$.
$endgroup$
– darij grinberg
Nov 30 '18 at 9:50
$begingroup$
I'd look for a closed formula. E.g., one has $f(n,n)={2over3} n^2 - n^3 + {1over3}n^4$
$endgroup$
– Christian Blatter
Nov 30 '18 at 11:15
$begingroup$
How can this computation be $O(N^2M^2)$ ??? There are exactly $NM$ terms in the summation. There is certainly an $O(1)$ formula.
$endgroup$
– Yves Daoust
Nov 30 '18 at 15:12