Quicksort in C with unit testing framework











up vote
0
down vote

favorite












This is my quicksort

There are many like it but

This quicksort is mine.



So, quicksort, in C, with a big framework to test it six ways from Sunday. Passed the tests nicely, but there may be warts, or subtle mistakes I didn’t think of, or code that’s hard to follow, or just better ways to do things. Have at it.



My quicksort implementation is somewhat slower than the library function; that’s only to be expected; library code is optimized and I don’t try to pick a good pivot with median-of-3 or such. No need to critique that, I wanted to keep it simple.



/* Quicksort implementation and testing framework */


#include <stdio.h>
#include <stdlib.h>
#include <string.h>


/* 0: use qsort correctly, to test the rest of the framework
* 1: mess up the sort sometimes, to test if sorting errors are caught
* 2: mess up the sentinels sometimes, to test if sentinel errors are
* caught
* 3: use my quicksort implementation, to test it */
#define TEST_TYPE 3

/* Stop testing after this many errors */
#define MAX_ERRORS 6

/* Set to 1 to print all pre-sort permutations */
#define VERBOSE 0

/* Max array length to test; more than 12 will take a long time */
#define MAXARRAY 10

/* Size of array for run_big_test() */
#define BIGTEST_SIZE 2000

/* Sentinels to detect buffer overruns */
#define SENTINEL_LEFT 111
#define SENTINEL_RIGHT -222


/* Used to count errors globally */
int err_ct = 0;


void run_tests(size_t N);
void run_big_test(void);
int error_check(size_t N, int *sorted);
void print_error(size_t N, int *to_sort, int *sorted);
void print_array(size_t len, int *arr);
int next_perm(int n, int *dest);
int cmp_int(const void *a, const void *b);
void quicksort(void *base, size_t nmemb, size_t size,
int (*cmp)(const void *, const void *));
void swap(void *a, void *b, size_t size);
void memquit(void);


int main(void)
{
size_t len;

srand(42);

for (len = 0; len <= MAXARRAY; ++len)
run_tests(len);

run_big_test();

return EXIT_SUCCESS;
}


void run_tests(size_t N)
{
/* Tests:
* 1. Sort all permutations of N distinct numbers.
* 2. Sort all permutations of N numbers with some repeated.
* 3. Sort an array of N numbers that are all the same (may catch
* infinite loops or recursion).
*/

int distinct[MAXARRAY];
int repeats[MAXARRAY] = {0, 0, 1, 2, 3, 3, 3, 4};
int perm[MAXARRAY];
int to_sort[MAXARRAY];
int sorted[MAXARRAY + 2];
int *dataset[2];
int i;
int test;
int retval;

if (N > MAXARRAY) {
fprintf(stderr, "run_tests(%lu) exceeds max array size.n", N);
exit(EXIT_FAILURE);
}

for (i = 0; i < (int) N; ++i)
distinct[i] = i;
for (i = 2; i < (int) N; ++i)
if (repeats[i] == 0)
repeats[i] = 5;
dataset[0] = distinct;
dataset[1] = repeats;

for (test = 0; test < 2; ++test) {
while ((retval = next_perm((int) N, perm)) == 1) {
for (i = 0; i < (int) N; ++i)
to_sort[i] = dataset[test][perm[i]];
#if VERBOSE
print_array(N, to_sort);
putchar('n');
#endif
sorted[0] = SENTINEL_LEFT;
memcpy(sorted + 1, to_sort, N * sizeof(int));
sorted[N + 1] = SENTINEL_RIGHT;
quicksort(sorted + 1, (size_t) N, sizeof(int), cmp_int);
if (error_check(N, sorted))
print_error(N, to_sort, sorted);
}
if (retval == -1)
memquit();
}

for (i = 0; i < (int) N; ++i)
to_sort[i] = 6;
#if VERBOSE
print_array(N, to_sort);
putchar('n');
#endif
sorted[0] = SENTINEL_LEFT;
memcpy(sorted + 1, to_sort, N * sizeof(int));
sorted[N + 1] = SENTINEL_RIGHT;
quicksort(sorted + 1, (size_t) N, sizeof(int), cmp_int);


if (sorted[0] != SENTINEL_LEFT ||
sorted[N + 1] != SENTINEL_RIGHT ||
memcmp(sorted + 1, to_sort, N * sizeof(int)))
print_error(N, to_sort, sorted);
}


void run_big_test(void)
{
/* Create a long array of random numbers, sort it, check
* correctness. */

int *to_sort;
int *sorted;
int i;

to_sort = malloc(BIGTEST_SIZE * sizeof(int));
sorted = malloc((BIGTEST_SIZE + 2) * sizeof(int));
if (!to_sort || !sorted)
memquit();

for (i = 0; i < BIGTEST_SIZE; ++i)
to_sort[i] = rand() % (BIGTEST_SIZE * 4);

#if VERBOSE
print_array(BIGTEST_SIZE, to_sort);
putchar('n');
#endif

sorted[0] = SENTINEL_LEFT;
memcpy(sorted + 1, to_sort, BIGTEST_SIZE * sizeof(int));
sorted[BIGTEST_SIZE + 1] = SENTINEL_RIGHT;
quicksort(sorted + 1, BIGTEST_SIZE, sizeof(int), cmp_int);
if (error_check(BIGTEST_SIZE, sorted))
print_error(BIGTEST_SIZE, to_sort, sorted);
}


int error_check(size_t N, int *sorted)
{
/* Check sentinels, check that sorted part is non-decreasing */

size_t i;

if (sorted[0] != SENTINEL_LEFT ||
sorted[N + 1] != SENTINEL_RIGHT)
return 1;

for (i = 2; i <= N; ++i)
if (sorted[i] < sorted[i - 1])
return 1;

return 0;
}


void print_error(size_t N, int *to_sort, int *sorted)
{
/* Print pre-sort and post-sort arrays to show where error occurred.
* Quit if MAX_ERRORS was reached. */

printf("Error: ");
print_array(N, to_sort);
printf(" -> ");
print_array(N + 2, sorted);
putchar('n');
if (++err_ct >= MAX_ERRORS)
exit(EXIT_FAILURE);
}


void print_array(size_t len, int *arr)
{
/* Pretty-print array. No newline at end. */

char *sep = "";
size_t i;

putchar('(');
for (i = 0; i < len; ++i) {
printf("%s%d", sep, arr[i]);
sep = ", ";
}
putchar(')');
}


int next_perm(int passed_n, int *dest)
{
/* Generate permutations of [0, n) in lexicographic order.
*
* First call: Set up, generate first permutation, return 1.
*
* Subsequent calls: If possible, generate next permutation and
* return 1. If all permutations have been returned, clean up and
* return 0. "First call" status is reset and another series may be
* generated.
*
* Return -1 to indicate a memory allocation failure.
*
* Caller may alter the values in `dest` freely between calls, and
* may pass a different `dest` address each time. `n` is ignored
* after the first call.
*
* The function maintains static data; it can only keep track of one
* series of permutations at a time. */

static int *perm;
static int new_series = 1;
static int n;
int i, j;

if (new_series) {
/* Set up first permutation, return it. */
new_series = 0;
n = passed_n;
if ((perm = malloc((size_t) n * sizeof(int))) == NULL)
return -1;
for (i = 0; i < n; ++i)
perm[i] = dest[i] = i;
return 1;
}

/* Generate and return next permutation. First, find longest
* descending run on right. */
i = n - 2;
while (i >= 0 && perm[i] > perm[i+1])
--i;

/* If all of perm is descending, the previous call returned the last
* permutation. */
if (i < 0) {
free(perm);
new_series = 1;
return 0;
}

/* Find smallest value > perm[i] in descending run. */
j = n - 1;
while (perm[j] < perm[i])
--j;

/* Swap [i] and [j]; run will still be descending. */
perm[i] ^= perm[j];
perm[j] ^= perm[i];
perm[i] ^= perm[j];

/* Reverse the run, and we're done. */
for (++i, j = n - 1; i < j; ++i, --j) {
perm[i] ^= perm[j];
perm[j] ^= perm[i];
perm[i] ^= perm[j];
}

for (i = 0; i < n; ++i)
dest[i] = perm[i];
return 1;
}


int cmp_int(const void *a, const void *b)
{
/* Compatible with qsort. a and b are treated as pointers to int.
* Return value is:
* < 0 if *a < *b
* > 0 if *a > *b
* 0 if *a == *b
*/

const int *aa = a;
const int *bb = b;

return *aa - *bb;
}


#if TEST_TYPE == 0
/* Use qsort(3), correctly */

void quicksort(void *base, size_t nmemb, size_t size,
int (*cmp)(const void *, const void *))
{
qsort(base, nmemb, size, cmp);
}

#endif


#if TEST_TYPE == 1
/* Mess up the sort with probability 1/256 */

void quicksort(void *base, size_t nmemb, size_t size,
int (*cmp)(const void *, const void *))
{
int *ibase = base;

qsort(base, nmemb, size, cmp);
if (rand() % 256 == 0) {
ibase[0] ^= ibase[nmemb - 1];
ibase[nmemb - 1] ^= ibase[0];
ibase[0] ^= ibase[nmemb - 1];
}
}

#endif


#if TEST_TYPE == 2
/* Mess up one of the sentinels with probability 1/256 */

void quicksort(void *base, size_t nmemb, size_t size,
int (*cmp)(const void *, const void *))
{
int *ibase = base;
int i;

qsort(base, nmemb, size, cmp);
if (rand() % 256 == 0) {
i = (rand() % 2) ? -1 : (int) nmemb;
ibase[i] = 42;
}
}

#endif


#if TEST_TYPE == 3
/* Use my implementation */

void quicksort(void *base, size_t nmemb, size_t size,
int (*cmp)(const void *, const void *))
{
/* Sort array with quicksort algorithm. Pivot is always leftmost
* element. */

char *cbase = base;
char *p, *q;

if (nmemb < 2)
return;

/* p at element 1, just past pivot */
p = cbase + size;

/* q at last element */
q = cbase + (nmemb - 1) * size;

while (p <= q) {
/* Move p right until *p >= pivot */
while (p <= q && cmp(p, base) < 0)
p += size;
/* Move q left until *q < pivot */
while (p <= q && cmp(q, base) >= 0)
q -= size;
if (p < q)
swap(p, q, size);
}

/* After partitioning:
* Pivot is element 0
* p = q + 1 (in terms of elements)
* Case 1: some elements < pivot, some >= pivot
* =<<<<>>>> q is rightmost <, p is leftmost >
* Case 2: all elements < pivot
* =<<<<<<<< q is rightmost <, p is one past end
* Case 3: all elements >= pivot
* =>>>>>>>> q is =, p is leftmost >
*
* If not case 3:
* Swap pivot with q
* Recurse on 0 to q - 1
* Recurse on p to nmemb - 1
*
* Pivot is left out of both recursive calls, so size is always
* reduced by at least one and infinite recursion cannot occur.
*/

if (q != cbase) {
swap(base, q, size);
quicksort(base, (size_t) (q - cbase) / size, size, cmp);
}
quicksort(p, nmemb - (size_t) (p - cbase) / size, size, cmp);
}

#endif


void swap(void *a, void *b, size_t size)
{
static size_t bufsize = 0;
static char *buf = NULL;

if (size != bufsize) {
bufsize = size;
buf = realloc(buf, bufsize);
if (!buf)
memquit();
}

memcpy(buf, a, size);
memcpy(a, b, size);
memcpy(b, buf, size);
}


void memquit(void)
{
fprintf(stderr, "Memory allocation failuren");
exit(EXIT_FAILURE);
}









share|improve this question


























    up vote
    0
    down vote

    favorite












    This is my quicksort

    There are many like it but

    This quicksort is mine.



    So, quicksort, in C, with a big framework to test it six ways from Sunday. Passed the tests nicely, but there may be warts, or subtle mistakes I didn’t think of, or code that’s hard to follow, or just better ways to do things. Have at it.



    My quicksort implementation is somewhat slower than the library function; that’s only to be expected; library code is optimized and I don’t try to pick a good pivot with median-of-3 or such. No need to critique that, I wanted to keep it simple.



    /* Quicksort implementation and testing framework */


    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>


    /* 0: use qsort correctly, to test the rest of the framework
    * 1: mess up the sort sometimes, to test if sorting errors are caught
    * 2: mess up the sentinels sometimes, to test if sentinel errors are
    * caught
    * 3: use my quicksort implementation, to test it */
    #define TEST_TYPE 3

    /* Stop testing after this many errors */
    #define MAX_ERRORS 6

    /* Set to 1 to print all pre-sort permutations */
    #define VERBOSE 0

    /* Max array length to test; more than 12 will take a long time */
    #define MAXARRAY 10

    /* Size of array for run_big_test() */
    #define BIGTEST_SIZE 2000

    /* Sentinels to detect buffer overruns */
    #define SENTINEL_LEFT 111
    #define SENTINEL_RIGHT -222


    /* Used to count errors globally */
    int err_ct = 0;


    void run_tests(size_t N);
    void run_big_test(void);
    int error_check(size_t N, int *sorted);
    void print_error(size_t N, int *to_sort, int *sorted);
    void print_array(size_t len, int *arr);
    int next_perm(int n, int *dest);
    int cmp_int(const void *a, const void *b);
    void quicksort(void *base, size_t nmemb, size_t size,
    int (*cmp)(const void *, const void *));
    void swap(void *a, void *b, size_t size);
    void memquit(void);


    int main(void)
    {
    size_t len;

    srand(42);

    for (len = 0; len <= MAXARRAY; ++len)
    run_tests(len);

    run_big_test();

    return EXIT_SUCCESS;
    }


    void run_tests(size_t N)
    {
    /* Tests:
    * 1. Sort all permutations of N distinct numbers.
    * 2. Sort all permutations of N numbers with some repeated.
    * 3. Sort an array of N numbers that are all the same (may catch
    * infinite loops or recursion).
    */

    int distinct[MAXARRAY];
    int repeats[MAXARRAY] = {0, 0, 1, 2, 3, 3, 3, 4};
    int perm[MAXARRAY];
    int to_sort[MAXARRAY];
    int sorted[MAXARRAY + 2];
    int *dataset[2];
    int i;
    int test;
    int retval;

    if (N > MAXARRAY) {
    fprintf(stderr, "run_tests(%lu) exceeds max array size.n", N);
    exit(EXIT_FAILURE);
    }

    for (i = 0; i < (int) N; ++i)
    distinct[i] = i;
    for (i = 2; i < (int) N; ++i)
    if (repeats[i] == 0)
    repeats[i] = 5;
    dataset[0] = distinct;
    dataset[1] = repeats;

    for (test = 0; test < 2; ++test) {
    while ((retval = next_perm((int) N, perm)) == 1) {
    for (i = 0; i < (int) N; ++i)
    to_sort[i] = dataset[test][perm[i]];
    #if VERBOSE
    print_array(N, to_sort);
    putchar('n');
    #endif
    sorted[0] = SENTINEL_LEFT;
    memcpy(sorted + 1, to_sort, N * sizeof(int));
    sorted[N + 1] = SENTINEL_RIGHT;
    quicksort(sorted + 1, (size_t) N, sizeof(int), cmp_int);
    if (error_check(N, sorted))
    print_error(N, to_sort, sorted);
    }
    if (retval == -1)
    memquit();
    }

    for (i = 0; i < (int) N; ++i)
    to_sort[i] = 6;
    #if VERBOSE
    print_array(N, to_sort);
    putchar('n');
    #endif
    sorted[0] = SENTINEL_LEFT;
    memcpy(sorted + 1, to_sort, N * sizeof(int));
    sorted[N + 1] = SENTINEL_RIGHT;
    quicksort(sorted + 1, (size_t) N, sizeof(int), cmp_int);


    if (sorted[0] != SENTINEL_LEFT ||
    sorted[N + 1] != SENTINEL_RIGHT ||
    memcmp(sorted + 1, to_sort, N * sizeof(int)))
    print_error(N, to_sort, sorted);
    }


    void run_big_test(void)
    {
    /* Create a long array of random numbers, sort it, check
    * correctness. */

    int *to_sort;
    int *sorted;
    int i;

    to_sort = malloc(BIGTEST_SIZE * sizeof(int));
    sorted = malloc((BIGTEST_SIZE + 2) * sizeof(int));
    if (!to_sort || !sorted)
    memquit();

    for (i = 0; i < BIGTEST_SIZE; ++i)
    to_sort[i] = rand() % (BIGTEST_SIZE * 4);

    #if VERBOSE
    print_array(BIGTEST_SIZE, to_sort);
    putchar('n');
    #endif

    sorted[0] = SENTINEL_LEFT;
    memcpy(sorted + 1, to_sort, BIGTEST_SIZE * sizeof(int));
    sorted[BIGTEST_SIZE + 1] = SENTINEL_RIGHT;
    quicksort(sorted + 1, BIGTEST_SIZE, sizeof(int), cmp_int);
    if (error_check(BIGTEST_SIZE, sorted))
    print_error(BIGTEST_SIZE, to_sort, sorted);
    }


    int error_check(size_t N, int *sorted)
    {
    /* Check sentinels, check that sorted part is non-decreasing */

    size_t i;

    if (sorted[0] != SENTINEL_LEFT ||
    sorted[N + 1] != SENTINEL_RIGHT)
    return 1;

    for (i = 2; i <= N; ++i)
    if (sorted[i] < sorted[i - 1])
    return 1;

    return 0;
    }


    void print_error(size_t N, int *to_sort, int *sorted)
    {
    /* Print pre-sort and post-sort arrays to show where error occurred.
    * Quit if MAX_ERRORS was reached. */

    printf("Error: ");
    print_array(N, to_sort);
    printf(" -> ");
    print_array(N + 2, sorted);
    putchar('n');
    if (++err_ct >= MAX_ERRORS)
    exit(EXIT_FAILURE);
    }


    void print_array(size_t len, int *arr)
    {
    /* Pretty-print array. No newline at end. */

    char *sep = "";
    size_t i;

    putchar('(');
    for (i = 0; i < len; ++i) {
    printf("%s%d", sep, arr[i]);
    sep = ", ";
    }
    putchar(')');
    }


    int next_perm(int passed_n, int *dest)
    {
    /* Generate permutations of [0, n) in lexicographic order.
    *
    * First call: Set up, generate first permutation, return 1.
    *
    * Subsequent calls: If possible, generate next permutation and
    * return 1. If all permutations have been returned, clean up and
    * return 0. "First call" status is reset and another series may be
    * generated.
    *
    * Return -1 to indicate a memory allocation failure.
    *
    * Caller may alter the values in `dest` freely between calls, and
    * may pass a different `dest` address each time. `n` is ignored
    * after the first call.
    *
    * The function maintains static data; it can only keep track of one
    * series of permutations at a time. */

    static int *perm;
    static int new_series = 1;
    static int n;
    int i, j;

    if (new_series) {
    /* Set up first permutation, return it. */
    new_series = 0;
    n = passed_n;
    if ((perm = malloc((size_t) n * sizeof(int))) == NULL)
    return -1;
    for (i = 0; i < n; ++i)
    perm[i] = dest[i] = i;
    return 1;
    }

    /* Generate and return next permutation. First, find longest
    * descending run on right. */
    i = n - 2;
    while (i >= 0 && perm[i] > perm[i+1])
    --i;

    /* If all of perm is descending, the previous call returned the last
    * permutation. */
    if (i < 0) {
    free(perm);
    new_series = 1;
    return 0;
    }

    /* Find smallest value > perm[i] in descending run. */
    j = n - 1;
    while (perm[j] < perm[i])
    --j;

    /* Swap [i] and [j]; run will still be descending. */
    perm[i] ^= perm[j];
    perm[j] ^= perm[i];
    perm[i] ^= perm[j];

    /* Reverse the run, and we're done. */
    for (++i, j = n - 1; i < j; ++i, --j) {
    perm[i] ^= perm[j];
    perm[j] ^= perm[i];
    perm[i] ^= perm[j];
    }

    for (i = 0; i < n; ++i)
    dest[i] = perm[i];
    return 1;
    }


    int cmp_int(const void *a, const void *b)
    {
    /* Compatible with qsort. a and b are treated as pointers to int.
    * Return value is:
    * < 0 if *a < *b
    * > 0 if *a > *b
    * 0 if *a == *b
    */

    const int *aa = a;
    const int *bb = b;

    return *aa - *bb;
    }


    #if TEST_TYPE == 0
    /* Use qsort(3), correctly */

    void quicksort(void *base, size_t nmemb, size_t size,
    int (*cmp)(const void *, const void *))
    {
    qsort(base, nmemb, size, cmp);
    }

    #endif


    #if TEST_TYPE == 1
    /* Mess up the sort with probability 1/256 */

    void quicksort(void *base, size_t nmemb, size_t size,
    int (*cmp)(const void *, const void *))
    {
    int *ibase = base;

    qsort(base, nmemb, size, cmp);
    if (rand() % 256 == 0) {
    ibase[0] ^= ibase[nmemb - 1];
    ibase[nmemb - 1] ^= ibase[0];
    ibase[0] ^= ibase[nmemb - 1];
    }
    }

    #endif


    #if TEST_TYPE == 2
    /* Mess up one of the sentinels with probability 1/256 */

    void quicksort(void *base, size_t nmemb, size_t size,
    int (*cmp)(const void *, const void *))
    {
    int *ibase = base;
    int i;

    qsort(base, nmemb, size, cmp);
    if (rand() % 256 == 0) {
    i = (rand() % 2) ? -1 : (int) nmemb;
    ibase[i] = 42;
    }
    }

    #endif


    #if TEST_TYPE == 3
    /* Use my implementation */

    void quicksort(void *base, size_t nmemb, size_t size,
    int (*cmp)(const void *, const void *))
    {
    /* Sort array with quicksort algorithm. Pivot is always leftmost
    * element. */

    char *cbase = base;
    char *p, *q;

    if (nmemb < 2)
    return;

    /* p at element 1, just past pivot */
    p = cbase + size;

    /* q at last element */
    q = cbase + (nmemb - 1) * size;

    while (p <= q) {
    /* Move p right until *p >= pivot */
    while (p <= q && cmp(p, base) < 0)
    p += size;
    /* Move q left until *q < pivot */
    while (p <= q && cmp(q, base) >= 0)
    q -= size;
    if (p < q)
    swap(p, q, size);
    }

    /* After partitioning:
    * Pivot is element 0
    * p = q + 1 (in terms of elements)
    * Case 1: some elements < pivot, some >= pivot
    * =<<<<>>>> q is rightmost <, p is leftmost >
    * Case 2: all elements < pivot
    * =<<<<<<<< q is rightmost <, p is one past end
    * Case 3: all elements >= pivot
    * =>>>>>>>> q is =, p is leftmost >
    *
    * If not case 3:
    * Swap pivot with q
    * Recurse on 0 to q - 1
    * Recurse on p to nmemb - 1
    *
    * Pivot is left out of both recursive calls, so size is always
    * reduced by at least one and infinite recursion cannot occur.
    */

    if (q != cbase) {
    swap(base, q, size);
    quicksort(base, (size_t) (q - cbase) / size, size, cmp);
    }
    quicksort(p, nmemb - (size_t) (p - cbase) / size, size, cmp);
    }

    #endif


    void swap(void *a, void *b, size_t size)
    {
    static size_t bufsize = 0;
    static char *buf = NULL;

    if (size != bufsize) {
    bufsize = size;
    buf = realloc(buf, bufsize);
    if (!buf)
    memquit();
    }

    memcpy(buf, a, size);
    memcpy(a, b, size);
    memcpy(b, buf, size);
    }


    void memquit(void)
    {
    fprintf(stderr, "Memory allocation failuren");
    exit(EXIT_FAILURE);
    }









    share|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      This is my quicksort

      There are many like it but

      This quicksort is mine.



      So, quicksort, in C, with a big framework to test it six ways from Sunday. Passed the tests nicely, but there may be warts, or subtle mistakes I didn’t think of, or code that’s hard to follow, or just better ways to do things. Have at it.



      My quicksort implementation is somewhat slower than the library function; that’s only to be expected; library code is optimized and I don’t try to pick a good pivot with median-of-3 or such. No need to critique that, I wanted to keep it simple.



      /* Quicksort implementation and testing framework */


      #include <stdio.h>
      #include <stdlib.h>
      #include <string.h>


      /* 0: use qsort correctly, to test the rest of the framework
      * 1: mess up the sort sometimes, to test if sorting errors are caught
      * 2: mess up the sentinels sometimes, to test if sentinel errors are
      * caught
      * 3: use my quicksort implementation, to test it */
      #define TEST_TYPE 3

      /* Stop testing after this many errors */
      #define MAX_ERRORS 6

      /* Set to 1 to print all pre-sort permutations */
      #define VERBOSE 0

      /* Max array length to test; more than 12 will take a long time */
      #define MAXARRAY 10

      /* Size of array for run_big_test() */
      #define BIGTEST_SIZE 2000

      /* Sentinels to detect buffer overruns */
      #define SENTINEL_LEFT 111
      #define SENTINEL_RIGHT -222


      /* Used to count errors globally */
      int err_ct = 0;


      void run_tests(size_t N);
      void run_big_test(void);
      int error_check(size_t N, int *sorted);
      void print_error(size_t N, int *to_sort, int *sorted);
      void print_array(size_t len, int *arr);
      int next_perm(int n, int *dest);
      int cmp_int(const void *a, const void *b);
      void quicksort(void *base, size_t nmemb, size_t size,
      int (*cmp)(const void *, const void *));
      void swap(void *a, void *b, size_t size);
      void memquit(void);


      int main(void)
      {
      size_t len;

      srand(42);

      for (len = 0; len <= MAXARRAY; ++len)
      run_tests(len);

      run_big_test();

      return EXIT_SUCCESS;
      }


      void run_tests(size_t N)
      {
      /* Tests:
      * 1. Sort all permutations of N distinct numbers.
      * 2. Sort all permutations of N numbers with some repeated.
      * 3. Sort an array of N numbers that are all the same (may catch
      * infinite loops or recursion).
      */

      int distinct[MAXARRAY];
      int repeats[MAXARRAY] = {0, 0, 1, 2, 3, 3, 3, 4};
      int perm[MAXARRAY];
      int to_sort[MAXARRAY];
      int sorted[MAXARRAY + 2];
      int *dataset[2];
      int i;
      int test;
      int retval;

      if (N > MAXARRAY) {
      fprintf(stderr, "run_tests(%lu) exceeds max array size.n", N);
      exit(EXIT_FAILURE);
      }

      for (i = 0; i < (int) N; ++i)
      distinct[i] = i;
      for (i = 2; i < (int) N; ++i)
      if (repeats[i] == 0)
      repeats[i] = 5;
      dataset[0] = distinct;
      dataset[1] = repeats;

      for (test = 0; test < 2; ++test) {
      while ((retval = next_perm((int) N, perm)) == 1) {
      for (i = 0; i < (int) N; ++i)
      to_sort[i] = dataset[test][perm[i]];
      #if VERBOSE
      print_array(N, to_sort);
      putchar('n');
      #endif
      sorted[0] = SENTINEL_LEFT;
      memcpy(sorted + 1, to_sort, N * sizeof(int));
      sorted[N + 1] = SENTINEL_RIGHT;
      quicksort(sorted + 1, (size_t) N, sizeof(int), cmp_int);
      if (error_check(N, sorted))
      print_error(N, to_sort, sorted);
      }
      if (retval == -1)
      memquit();
      }

      for (i = 0; i < (int) N; ++i)
      to_sort[i] = 6;
      #if VERBOSE
      print_array(N, to_sort);
      putchar('n');
      #endif
      sorted[0] = SENTINEL_LEFT;
      memcpy(sorted + 1, to_sort, N * sizeof(int));
      sorted[N + 1] = SENTINEL_RIGHT;
      quicksort(sorted + 1, (size_t) N, sizeof(int), cmp_int);


      if (sorted[0] != SENTINEL_LEFT ||
      sorted[N + 1] != SENTINEL_RIGHT ||
      memcmp(sorted + 1, to_sort, N * sizeof(int)))
      print_error(N, to_sort, sorted);
      }


      void run_big_test(void)
      {
      /* Create a long array of random numbers, sort it, check
      * correctness. */

      int *to_sort;
      int *sorted;
      int i;

      to_sort = malloc(BIGTEST_SIZE * sizeof(int));
      sorted = malloc((BIGTEST_SIZE + 2) * sizeof(int));
      if (!to_sort || !sorted)
      memquit();

      for (i = 0; i < BIGTEST_SIZE; ++i)
      to_sort[i] = rand() % (BIGTEST_SIZE * 4);

      #if VERBOSE
      print_array(BIGTEST_SIZE, to_sort);
      putchar('n');
      #endif

      sorted[0] = SENTINEL_LEFT;
      memcpy(sorted + 1, to_sort, BIGTEST_SIZE * sizeof(int));
      sorted[BIGTEST_SIZE + 1] = SENTINEL_RIGHT;
      quicksort(sorted + 1, BIGTEST_SIZE, sizeof(int), cmp_int);
      if (error_check(BIGTEST_SIZE, sorted))
      print_error(BIGTEST_SIZE, to_sort, sorted);
      }


      int error_check(size_t N, int *sorted)
      {
      /* Check sentinels, check that sorted part is non-decreasing */

      size_t i;

      if (sorted[0] != SENTINEL_LEFT ||
      sorted[N + 1] != SENTINEL_RIGHT)
      return 1;

      for (i = 2; i <= N; ++i)
      if (sorted[i] < sorted[i - 1])
      return 1;

      return 0;
      }


      void print_error(size_t N, int *to_sort, int *sorted)
      {
      /* Print pre-sort and post-sort arrays to show where error occurred.
      * Quit if MAX_ERRORS was reached. */

      printf("Error: ");
      print_array(N, to_sort);
      printf(" -> ");
      print_array(N + 2, sorted);
      putchar('n');
      if (++err_ct >= MAX_ERRORS)
      exit(EXIT_FAILURE);
      }


      void print_array(size_t len, int *arr)
      {
      /* Pretty-print array. No newline at end. */

      char *sep = "";
      size_t i;

      putchar('(');
      for (i = 0; i < len; ++i) {
      printf("%s%d", sep, arr[i]);
      sep = ", ";
      }
      putchar(')');
      }


      int next_perm(int passed_n, int *dest)
      {
      /* Generate permutations of [0, n) in lexicographic order.
      *
      * First call: Set up, generate first permutation, return 1.
      *
      * Subsequent calls: If possible, generate next permutation and
      * return 1. If all permutations have been returned, clean up and
      * return 0. "First call" status is reset and another series may be
      * generated.
      *
      * Return -1 to indicate a memory allocation failure.
      *
      * Caller may alter the values in `dest` freely between calls, and
      * may pass a different `dest` address each time. `n` is ignored
      * after the first call.
      *
      * The function maintains static data; it can only keep track of one
      * series of permutations at a time. */

      static int *perm;
      static int new_series = 1;
      static int n;
      int i, j;

      if (new_series) {
      /* Set up first permutation, return it. */
      new_series = 0;
      n = passed_n;
      if ((perm = malloc((size_t) n * sizeof(int))) == NULL)
      return -1;
      for (i = 0; i < n; ++i)
      perm[i] = dest[i] = i;
      return 1;
      }

      /* Generate and return next permutation. First, find longest
      * descending run on right. */
      i = n - 2;
      while (i >= 0 && perm[i] > perm[i+1])
      --i;

      /* If all of perm is descending, the previous call returned the last
      * permutation. */
      if (i < 0) {
      free(perm);
      new_series = 1;
      return 0;
      }

      /* Find smallest value > perm[i] in descending run. */
      j = n - 1;
      while (perm[j] < perm[i])
      --j;

      /* Swap [i] and [j]; run will still be descending. */
      perm[i] ^= perm[j];
      perm[j] ^= perm[i];
      perm[i] ^= perm[j];

      /* Reverse the run, and we're done. */
      for (++i, j = n - 1; i < j; ++i, --j) {
      perm[i] ^= perm[j];
      perm[j] ^= perm[i];
      perm[i] ^= perm[j];
      }

      for (i = 0; i < n; ++i)
      dest[i] = perm[i];
      return 1;
      }


      int cmp_int(const void *a, const void *b)
      {
      /* Compatible with qsort. a and b are treated as pointers to int.
      * Return value is:
      * < 0 if *a < *b
      * > 0 if *a > *b
      * 0 if *a == *b
      */

      const int *aa = a;
      const int *bb = b;

      return *aa - *bb;
      }


      #if TEST_TYPE == 0
      /* Use qsort(3), correctly */

      void quicksort(void *base, size_t nmemb, size_t size,
      int (*cmp)(const void *, const void *))
      {
      qsort(base, nmemb, size, cmp);
      }

      #endif


      #if TEST_TYPE == 1
      /* Mess up the sort with probability 1/256 */

      void quicksort(void *base, size_t nmemb, size_t size,
      int (*cmp)(const void *, const void *))
      {
      int *ibase = base;

      qsort(base, nmemb, size, cmp);
      if (rand() % 256 == 0) {
      ibase[0] ^= ibase[nmemb - 1];
      ibase[nmemb - 1] ^= ibase[0];
      ibase[0] ^= ibase[nmemb - 1];
      }
      }

      #endif


      #if TEST_TYPE == 2
      /* Mess up one of the sentinels with probability 1/256 */

      void quicksort(void *base, size_t nmemb, size_t size,
      int (*cmp)(const void *, const void *))
      {
      int *ibase = base;
      int i;

      qsort(base, nmemb, size, cmp);
      if (rand() % 256 == 0) {
      i = (rand() % 2) ? -1 : (int) nmemb;
      ibase[i] = 42;
      }
      }

      #endif


      #if TEST_TYPE == 3
      /* Use my implementation */

      void quicksort(void *base, size_t nmemb, size_t size,
      int (*cmp)(const void *, const void *))
      {
      /* Sort array with quicksort algorithm. Pivot is always leftmost
      * element. */

      char *cbase = base;
      char *p, *q;

      if (nmemb < 2)
      return;

      /* p at element 1, just past pivot */
      p = cbase + size;

      /* q at last element */
      q = cbase + (nmemb - 1) * size;

      while (p <= q) {
      /* Move p right until *p >= pivot */
      while (p <= q && cmp(p, base) < 0)
      p += size;
      /* Move q left until *q < pivot */
      while (p <= q && cmp(q, base) >= 0)
      q -= size;
      if (p < q)
      swap(p, q, size);
      }

      /* After partitioning:
      * Pivot is element 0
      * p = q + 1 (in terms of elements)
      * Case 1: some elements < pivot, some >= pivot
      * =<<<<>>>> q is rightmost <, p is leftmost >
      * Case 2: all elements < pivot
      * =<<<<<<<< q is rightmost <, p is one past end
      * Case 3: all elements >= pivot
      * =>>>>>>>> q is =, p is leftmost >
      *
      * If not case 3:
      * Swap pivot with q
      * Recurse on 0 to q - 1
      * Recurse on p to nmemb - 1
      *
      * Pivot is left out of both recursive calls, so size is always
      * reduced by at least one and infinite recursion cannot occur.
      */

      if (q != cbase) {
      swap(base, q, size);
      quicksort(base, (size_t) (q - cbase) / size, size, cmp);
      }
      quicksort(p, nmemb - (size_t) (p - cbase) / size, size, cmp);
      }

      #endif


      void swap(void *a, void *b, size_t size)
      {
      static size_t bufsize = 0;
      static char *buf = NULL;

      if (size != bufsize) {
      bufsize = size;
      buf = realloc(buf, bufsize);
      if (!buf)
      memquit();
      }

      memcpy(buf, a, size);
      memcpy(a, b, size);
      memcpy(b, buf, size);
      }


      void memquit(void)
      {
      fprintf(stderr, "Memory allocation failuren");
      exit(EXIT_FAILURE);
      }









      share|improve this question













      This is my quicksort

      There are many like it but

      This quicksort is mine.



      So, quicksort, in C, with a big framework to test it six ways from Sunday. Passed the tests nicely, but there may be warts, or subtle mistakes I didn’t think of, or code that’s hard to follow, or just better ways to do things. Have at it.



      My quicksort implementation is somewhat slower than the library function; that’s only to be expected; library code is optimized and I don’t try to pick a good pivot with median-of-3 or such. No need to critique that, I wanted to keep it simple.



      /* Quicksort implementation and testing framework */


      #include <stdio.h>
      #include <stdlib.h>
      #include <string.h>


      /* 0: use qsort correctly, to test the rest of the framework
      * 1: mess up the sort sometimes, to test if sorting errors are caught
      * 2: mess up the sentinels sometimes, to test if sentinel errors are
      * caught
      * 3: use my quicksort implementation, to test it */
      #define TEST_TYPE 3

      /* Stop testing after this many errors */
      #define MAX_ERRORS 6

      /* Set to 1 to print all pre-sort permutations */
      #define VERBOSE 0

      /* Max array length to test; more than 12 will take a long time */
      #define MAXARRAY 10

      /* Size of array for run_big_test() */
      #define BIGTEST_SIZE 2000

      /* Sentinels to detect buffer overruns */
      #define SENTINEL_LEFT 111
      #define SENTINEL_RIGHT -222


      /* Used to count errors globally */
      int err_ct = 0;


      void run_tests(size_t N);
      void run_big_test(void);
      int error_check(size_t N, int *sorted);
      void print_error(size_t N, int *to_sort, int *sorted);
      void print_array(size_t len, int *arr);
      int next_perm(int n, int *dest);
      int cmp_int(const void *a, const void *b);
      void quicksort(void *base, size_t nmemb, size_t size,
      int (*cmp)(const void *, const void *));
      void swap(void *a, void *b, size_t size);
      void memquit(void);


      int main(void)
      {
      size_t len;

      srand(42);

      for (len = 0; len <= MAXARRAY; ++len)
      run_tests(len);

      run_big_test();

      return EXIT_SUCCESS;
      }


      void run_tests(size_t N)
      {
      /* Tests:
      * 1. Sort all permutations of N distinct numbers.
      * 2. Sort all permutations of N numbers with some repeated.
      * 3. Sort an array of N numbers that are all the same (may catch
      * infinite loops or recursion).
      */

      int distinct[MAXARRAY];
      int repeats[MAXARRAY] = {0, 0, 1, 2, 3, 3, 3, 4};
      int perm[MAXARRAY];
      int to_sort[MAXARRAY];
      int sorted[MAXARRAY + 2];
      int *dataset[2];
      int i;
      int test;
      int retval;

      if (N > MAXARRAY) {
      fprintf(stderr, "run_tests(%lu) exceeds max array size.n", N);
      exit(EXIT_FAILURE);
      }

      for (i = 0; i < (int) N; ++i)
      distinct[i] = i;
      for (i = 2; i < (int) N; ++i)
      if (repeats[i] == 0)
      repeats[i] = 5;
      dataset[0] = distinct;
      dataset[1] = repeats;

      for (test = 0; test < 2; ++test) {
      while ((retval = next_perm((int) N, perm)) == 1) {
      for (i = 0; i < (int) N; ++i)
      to_sort[i] = dataset[test][perm[i]];
      #if VERBOSE
      print_array(N, to_sort);
      putchar('n');
      #endif
      sorted[0] = SENTINEL_LEFT;
      memcpy(sorted + 1, to_sort, N * sizeof(int));
      sorted[N + 1] = SENTINEL_RIGHT;
      quicksort(sorted + 1, (size_t) N, sizeof(int), cmp_int);
      if (error_check(N, sorted))
      print_error(N, to_sort, sorted);
      }
      if (retval == -1)
      memquit();
      }

      for (i = 0; i < (int) N; ++i)
      to_sort[i] = 6;
      #if VERBOSE
      print_array(N, to_sort);
      putchar('n');
      #endif
      sorted[0] = SENTINEL_LEFT;
      memcpy(sorted + 1, to_sort, N * sizeof(int));
      sorted[N + 1] = SENTINEL_RIGHT;
      quicksort(sorted + 1, (size_t) N, sizeof(int), cmp_int);


      if (sorted[0] != SENTINEL_LEFT ||
      sorted[N + 1] != SENTINEL_RIGHT ||
      memcmp(sorted + 1, to_sort, N * sizeof(int)))
      print_error(N, to_sort, sorted);
      }


      void run_big_test(void)
      {
      /* Create a long array of random numbers, sort it, check
      * correctness. */

      int *to_sort;
      int *sorted;
      int i;

      to_sort = malloc(BIGTEST_SIZE * sizeof(int));
      sorted = malloc((BIGTEST_SIZE + 2) * sizeof(int));
      if (!to_sort || !sorted)
      memquit();

      for (i = 0; i < BIGTEST_SIZE; ++i)
      to_sort[i] = rand() % (BIGTEST_SIZE * 4);

      #if VERBOSE
      print_array(BIGTEST_SIZE, to_sort);
      putchar('n');
      #endif

      sorted[0] = SENTINEL_LEFT;
      memcpy(sorted + 1, to_sort, BIGTEST_SIZE * sizeof(int));
      sorted[BIGTEST_SIZE + 1] = SENTINEL_RIGHT;
      quicksort(sorted + 1, BIGTEST_SIZE, sizeof(int), cmp_int);
      if (error_check(BIGTEST_SIZE, sorted))
      print_error(BIGTEST_SIZE, to_sort, sorted);
      }


      int error_check(size_t N, int *sorted)
      {
      /* Check sentinels, check that sorted part is non-decreasing */

      size_t i;

      if (sorted[0] != SENTINEL_LEFT ||
      sorted[N + 1] != SENTINEL_RIGHT)
      return 1;

      for (i = 2; i <= N; ++i)
      if (sorted[i] < sorted[i - 1])
      return 1;

      return 0;
      }


      void print_error(size_t N, int *to_sort, int *sorted)
      {
      /* Print pre-sort and post-sort arrays to show where error occurred.
      * Quit if MAX_ERRORS was reached. */

      printf("Error: ");
      print_array(N, to_sort);
      printf(" -> ");
      print_array(N + 2, sorted);
      putchar('n');
      if (++err_ct >= MAX_ERRORS)
      exit(EXIT_FAILURE);
      }


      void print_array(size_t len, int *arr)
      {
      /* Pretty-print array. No newline at end. */

      char *sep = "";
      size_t i;

      putchar('(');
      for (i = 0; i < len; ++i) {
      printf("%s%d", sep, arr[i]);
      sep = ", ";
      }
      putchar(')');
      }


      int next_perm(int passed_n, int *dest)
      {
      /* Generate permutations of [0, n) in lexicographic order.
      *
      * First call: Set up, generate first permutation, return 1.
      *
      * Subsequent calls: If possible, generate next permutation and
      * return 1. If all permutations have been returned, clean up and
      * return 0. "First call" status is reset and another series may be
      * generated.
      *
      * Return -1 to indicate a memory allocation failure.
      *
      * Caller may alter the values in `dest` freely between calls, and
      * may pass a different `dest` address each time. `n` is ignored
      * after the first call.
      *
      * The function maintains static data; it can only keep track of one
      * series of permutations at a time. */

      static int *perm;
      static int new_series = 1;
      static int n;
      int i, j;

      if (new_series) {
      /* Set up first permutation, return it. */
      new_series = 0;
      n = passed_n;
      if ((perm = malloc((size_t) n * sizeof(int))) == NULL)
      return -1;
      for (i = 0; i < n; ++i)
      perm[i] = dest[i] = i;
      return 1;
      }

      /* Generate and return next permutation. First, find longest
      * descending run on right. */
      i = n - 2;
      while (i >= 0 && perm[i] > perm[i+1])
      --i;

      /* If all of perm is descending, the previous call returned the last
      * permutation. */
      if (i < 0) {
      free(perm);
      new_series = 1;
      return 0;
      }

      /* Find smallest value > perm[i] in descending run. */
      j = n - 1;
      while (perm[j] < perm[i])
      --j;

      /* Swap [i] and [j]; run will still be descending. */
      perm[i] ^= perm[j];
      perm[j] ^= perm[i];
      perm[i] ^= perm[j];

      /* Reverse the run, and we're done. */
      for (++i, j = n - 1; i < j; ++i, --j) {
      perm[i] ^= perm[j];
      perm[j] ^= perm[i];
      perm[i] ^= perm[j];
      }

      for (i = 0; i < n; ++i)
      dest[i] = perm[i];
      return 1;
      }


      int cmp_int(const void *a, const void *b)
      {
      /* Compatible with qsort. a and b are treated as pointers to int.
      * Return value is:
      * < 0 if *a < *b
      * > 0 if *a > *b
      * 0 if *a == *b
      */

      const int *aa = a;
      const int *bb = b;

      return *aa - *bb;
      }


      #if TEST_TYPE == 0
      /* Use qsort(3), correctly */

      void quicksort(void *base, size_t nmemb, size_t size,
      int (*cmp)(const void *, const void *))
      {
      qsort(base, nmemb, size, cmp);
      }

      #endif


      #if TEST_TYPE == 1
      /* Mess up the sort with probability 1/256 */

      void quicksort(void *base, size_t nmemb, size_t size,
      int (*cmp)(const void *, const void *))
      {
      int *ibase = base;

      qsort(base, nmemb, size, cmp);
      if (rand() % 256 == 0) {
      ibase[0] ^= ibase[nmemb - 1];
      ibase[nmemb - 1] ^= ibase[0];
      ibase[0] ^= ibase[nmemb - 1];
      }
      }

      #endif


      #if TEST_TYPE == 2
      /* Mess up one of the sentinels with probability 1/256 */

      void quicksort(void *base, size_t nmemb, size_t size,
      int (*cmp)(const void *, const void *))
      {
      int *ibase = base;
      int i;

      qsort(base, nmemb, size, cmp);
      if (rand() % 256 == 0) {
      i = (rand() % 2) ? -1 : (int) nmemb;
      ibase[i] = 42;
      }
      }

      #endif


      #if TEST_TYPE == 3
      /* Use my implementation */

      void quicksort(void *base, size_t nmemb, size_t size,
      int (*cmp)(const void *, const void *))
      {
      /* Sort array with quicksort algorithm. Pivot is always leftmost
      * element. */

      char *cbase = base;
      char *p, *q;

      if (nmemb < 2)
      return;

      /* p at element 1, just past pivot */
      p = cbase + size;

      /* q at last element */
      q = cbase + (nmemb - 1) * size;

      while (p <= q) {
      /* Move p right until *p >= pivot */
      while (p <= q && cmp(p, base) < 0)
      p += size;
      /* Move q left until *q < pivot */
      while (p <= q && cmp(q, base) >= 0)
      q -= size;
      if (p < q)
      swap(p, q, size);
      }

      /* After partitioning:
      * Pivot is element 0
      * p = q + 1 (in terms of elements)
      * Case 1: some elements < pivot, some >= pivot
      * =<<<<>>>> q is rightmost <, p is leftmost >
      * Case 2: all elements < pivot
      * =<<<<<<<< q is rightmost <, p is one past end
      * Case 3: all elements >= pivot
      * =>>>>>>>> q is =, p is leftmost >
      *
      * If not case 3:
      * Swap pivot with q
      * Recurse on 0 to q - 1
      * Recurse on p to nmemb - 1
      *
      * Pivot is left out of both recursive calls, so size is always
      * reduced by at least one and infinite recursion cannot occur.
      */

      if (q != cbase) {
      swap(base, q, size);
      quicksort(base, (size_t) (q - cbase) / size, size, cmp);
      }
      quicksort(p, nmemb - (size_t) (p - cbase) / size, size, cmp);
      }

      #endif


      void swap(void *a, void *b, size_t size)
      {
      static size_t bufsize = 0;
      static char *buf = NULL;

      if (size != bufsize) {
      bufsize = size;
      buf = realloc(buf, bufsize);
      if (!buf)
      memquit();
      }

      memcpy(buf, a, size);
      memcpy(a, b, size);
      memcpy(b, buf, size);
      }


      void memquit(void)
      {
      fprintf(stderr, "Memory allocation failuren");
      exit(EXIT_FAILURE);
      }






      c unit-testing quick-sort






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 38 mins ago









      Tom Zych

      324211




      324211



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f209749%2fquicksort-in-c-with-unit-testing-framework%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f209749%2fquicksort-in-c-with-unit-testing-framework%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei