Sum of independent random variables with different distributions











up vote
0
down vote

favorite












Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
$$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
    $$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
      $$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$










      share|cite|improve this question













      Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
      $$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$







      probability proof-verification






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 22 at 14:27









      dxdydz

      1929




      1929






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$



          if $n>0$, then we have



          begin{align}
          p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
          &= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
          end{align}






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009200%2fsum-of-independent-random-variables-with-different-distributions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$



            if $n>0$, then we have



            begin{align}
            p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
            &= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
            end{align}






            share|cite|improve this answer

























              up vote
              1
              down vote



              accepted










              if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$



              if $n>0$, then we have



              begin{align}
              p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
              &= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
              end{align}






              share|cite|improve this answer























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$



                if $n>0$, then we have



                begin{align}
                p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
                &= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
                end{align}






                share|cite|improve this answer












                if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$



                if $n>0$, then we have



                begin{align}
                p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
                &= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
                end{align}







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 22 at 14:34









                Siong Thye Goh

                97.7k1463116




                97.7k1463116






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009200%2fsum-of-independent-random-variables-with-different-distributions%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Quarter-circle Tiles

                    build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                    Mont Emei