Maximizing a weighted sum of logarithms
up vote
1
down vote
favorite
I'm trying to show that for:
$$p^* equiv max_{x} sum^{k=n}_{k=1} a_k ln x_k
$$
Where:
$
x in mathbb{R}^n \
x geq 0 \
sum_{k=1}^{k=n} x_k=c \
c > 0 \
forall a_k, a_k > 0 \
a equiv sum_{k=1}^{k=n} a_k
$
That:
$$
p^* = aln{frac{c}{a}}+sum^{k=n}_{k=1} a_k ln a_k
$$
I'm really not certain where even to begin with this derivation.
inequality optimization summation logarithms convex-optimization
add a comment |
up vote
1
down vote
favorite
I'm trying to show that for:
$$p^* equiv max_{x} sum^{k=n}_{k=1} a_k ln x_k
$$
Where:
$
x in mathbb{R}^n \
x geq 0 \
sum_{k=1}^{k=n} x_k=c \
c > 0 \
forall a_k, a_k > 0 \
a equiv sum_{k=1}^{k=n} a_k
$
That:
$$
p^* = aln{frac{c}{a}}+sum^{k=n}_{k=1} a_k ln a_k
$$
I'm really not certain where even to begin with this derivation.
inequality optimization summation logarithms convex-optimization
Try the KKT approach.
– LinAlg
Nov 14 at 21:36
@LinAlg what's a good resource for KKT? I'm not super familiar.
– mmam
Nov 14 at 22:08
en.wikipedia.org/wiki/…
– LinAlg
Nov 14 at 23:02
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I'm trying to show that for:
$$p^* equiv max_{x} sum^{k=n}_{k=1} a_k ln x_k
$$
Where:
$
x in mathbb{R}^n \
x geq 0 \
sum_{k=1}^{k=n} x_k=c \
c > 0 \
forall a_k, a_k > 0 \
a equiv sum_{k=1}^{k=n} a_k
$
That:
$$
p^* = aln{frac{c}{a}}+sum^{k=n}_{k=1} a_k ln a_k
$$
I'm really not certain where even to begin with this derivation.
inequality optimization summation logarithms convex-optimization
I'm trying to show that for:
$$p^* equiv max_{x} sum^{k=n}_{k=1} a_k ln x_k
$$
Where:
$
x in mathbb{R}^n \
x geq 0 \
sum_{k=1}^{k=n} x_k=c \
c > 0 \
forall a_k, a_k > 0 \
a equiv sum_{k=1}^{k=n} a_k
$
That:
$$
p^* = aln{frac{c}{a}}+sum^{k=n}_{k=1} a_k ln a_k
$$
I'm really not certain where even to begin with this derivation.
inequality optimization summation logarithms convex-optimization
inequality optimization summation logarithms convex-optimization
edited Nov 22 at 17:57
Batominovski
33.5k33292
33.5k33292
asked Nov 14 at 20:59
mmam
811826
811826
Try the KKT approach.
– LinAlg
Nov 14 at 21:36
@LinAlg what's a good resource for KKT? I'm not super familiar.
– mmam
Nov 14 at 22:08
en.wikipedia.org/wiki/…
– LinAlg
Nov 14 at 23:02
add a comment |
Try the KKT approach.
– LinAlg
Nov 14 at 21:36
@LinAlg what's a good resource for KKT? I'm not super familiar.
– mmam
Nov 14 at 22:08
en.wikipedia.org/wiki/…
– LinAlg
Nov 14 at 23:02
Try the KKT approach.
– LinAlg
Nov 14 at 21:36
Try the KKT approach.
– LinAlg
Nov 14 at 21:36
@LinAlg what's a good resource for KKT? I'm not super familiar.
– mmam
Nov 14 at 22:08
@LinAlg what's a good resource for KKT? I'm not super familiar.
– mmam
Nov 14 at 22:08
en.wikipedia.org/wiki/…
– LinAlg
Nov 14 at 23:02
en.wikipedia.org/wiki/…
– LinAlg
Nov 14 at 23:02
add a comment |
2 Answers
2
active
oldest
votes
up vote
2
down vote
I shall come back with a Lagrangian approach tomorrow. However, I now present a solution using the Weighted AM-GM Inequality.
We have that
$$sum_{k=1}^n,frac{a_k}{a},left(frac{a,x_k}{a_k}right)=sum_{k=1}^n,x_k=c,,$$
with
$$sum_{k=1}^n,frac{a_i}{a}=frac{sumlimits_{k=1}^n,a_k}{a}=frac{a}{a}=1,.$$
By the Weighted AM-GM Inequality, we have
$$c=sum_{k=1}^n,frac{a_k}{a},left(frac{a,x_k}{a_k}right)geq prod_{k=1}^n,left(frac{a,x_k}{a_k}right)^{frac{a_k}{a}},.$$
Take logarithm on both sides of the inequality above, we get
$$ln(c)geq sum_{k=1}^n,frac{a_k}{a},lnleft(frac{a,x_k}{a_k}right)=frac{1}{a},sum_{k=1}^n,Big(a_k,lnleft(x_kright)-a_k,lnleft(a_kright)+a_k,ln(a)Big),.$$
Ergo,
$$sum_{k=1}^n,a_k,lnleft(x_kright)leq a,ln(c)-left(sum_{k=1}^n,a_kright),ln(a)+sum_{k=1}^n,a_k,lnleft(a_kright)=a,lnleft(frac{c}{a}right)+sum_{k=1}^n,a_k,lnleft(a_kright),.$$
Note that inequality above becomes an equality if and only if $$frac{x_1}{a_1}=frac{x_2}{a_2}=ldots=frac{x_n}{a_n}=frac{c}{a},,$$
or equivalently,
$$left(x_1,x_2,ldots,x_nright)=left(frac{c,a_1}{a},frac{c,a_2}{a},ldots,frac{c,a_n}{a}right),.$$
This shows that $$p^*= a,lnleft(frac{c}{a}right)+sum_{k=1}^n,a_k,lnleft(a_kright),.$$
add a comment |
up vote
0
down vote
With the Lagrange multiplier method you want to maximize $p(x)=sum a_k ln(x_k) +lambda (c-sum x_k)$.
Differentiating w.r.t. the $x$'s and setting equal to zero gives $frac{a_k}{x_k}=lambda$.
Imposing the constraint $c=sum x_k=frac{sum a_k}{lambda}=frac{a}{lambda}$. It follows that $lambda=a/c$.
So $x_k=frac{a_k }{ lambda}=frac{c a_k}{a}$.
So $p^*=sum a_k ln(x_k)=sum a_k ln(frac{c a_k}{a})=sum a_k (ln(frac{c}{a}) + ln(a_k))=aln(frac{c}{a})+sum a_k ln(a_k)$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998812%2fmaximizing-a-weighted-sum-of-logarithms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
I shall come back with a Lagrangian approach tomorrow. However, I now present a solution using the Weighted AM-GM Inequality.
We have that
$$sum_{k=1}^n,frac{a_k}{a},left(frac{a,x_k}{a_k}right)=sum_{k=1}^n,x_k=c,,$$
with
$$sum_{k=1}^n,frac{a_i}{a}=frac{sumlimits_{k=1}^n,a_k}{a}=frac{a}{a}=1,.$$
By the Weighted AM-GM Inequality, we have
$$c=sum_{k=1}^n,frac{a_k}{a},left(frac{a,x_k}{a_k}right)geq prod_{k=1}^n,left(frac{a,x_k}{a_k}right)^{frac{a_k}{a}},.$$
Take logarithm on both sides of the inequality above, we get
$$ln(c)geq sum_{k=1}^n,frac{a_k}{a},lnleft(frac{a,x_k}{a_k}right)=frac{1}{a},sum_{k=1}^n,Big(a_k,lnleft(x_kright)-a_k,lnleft(a_kright)+a_k,ln(a)Big),.$$
Ergo,
$$sum_{k=1}^n,a_k,lnleft(x_kright)leq a,ln(c)-left(sum_{k=1}^n,a_kright),ln(a)+sum_{k=1}^n,a_k,lnleft(a_kright)=a,lnleft(frac{c}{a}right)+sum_{k=1}^n,a_k,lnleft(a_kright),.$$
Note that inequality above becomes an equality if and only if $$frac{x_1}{a_1}=frac{x_2}{a_2}=ldots=frac{x_n}{a_n}=frac{c}{a},,$$
or equivalently,
$$left(x_1,x_2,ldots,x_nright)=left(frac{c,a_1}{a},frac{c,a_2}{a},ldots,frac{c,a_n}{a}right),.$$
This shows that $$p^*= a,lnleft(frac{c}{a}right)+sum_{k=1}^n,a_k,lnleft(a_kright),.$$
add a comment |
up vote
2
down vote
I shall come back with a Lagrangian approach tomorrow. However, I now present a solution using the Weighted AM-GM Inequality.
We have that
$$sum_{k=1}^n,frac{a_k}{a},left(frac{a,x_k}{a_k}right)=sum_{k=1}^n,x_k=c,,$$
with
$$sum_{k=1}^n,frac{a_i}{a}=frac{sumlimits_{k=1}^n,a_k}{a}=frac{a}{a}=1,.$$
By the Weighted AM-GM Inequality, we have
$$c=sum_{k=1}^n,frac{a_k}{a},left(frac{a,x_k}{a_k}right)geq prod_{k=1}^n,left(frac{a,x_k}{a_k}right)^{frac{a_k}{a}},.$$
Take logarithm on both sides of the inequality above, we get
$$ln(c)geq sum_{k=1}^n,frac{a_k}{a},lnleft(frac{a,x_k}{a_k}right)=frac{1}{a},sum_{k=1}^n,Big(a_k,lnleft(x_kright)-a_k,lnleft(a_kright)+a_k,ln(a)Big),.$$
Ergo,
$$sum_{k=1}^n,a_k,lnleft(x_kright)leq a,ln(c)-left(sum_{k=1}^n,a_kright),ln(a)+sum_{k=1}^n,a_k,lnleft(a_kright)=a,lnleft(frac{c}{a}right)+sum_{k=1}^n,a_k,lnleft(a_kright),.$$
Note that inequality above becomes an equality if and only if $$frac{x_1}{a_1}=frac{x_2}{a_2}=ldots=frac{x_n}{a_n}=frac{c}{a},,$$
or equivalently,
$$left(x_1,x_2,ldots,x_nright)=left(frac{c,a_1}{a},frac{c,a_2}{a},ldots,frac{c,a_n}{a}right),.$$
This shows that $$p^*= a,lnleft(frac{c}{a}right)+sum_{k=1}^n,a_k,lnleft(a_kright),.$$
add a comment |
up vote
2
down vote
up vote
2
down vote
I shall come back with a Lagrangian approach tomorrow. However, I now present a solution using the Weighted AM-GM Inequality.
We have that
$$sum_{k=1}^n,frac{a_k}{a},left(frac{a,x_k}{a_k}right)=sum_{k=1}^n,x_k=c,,$$
with
$$sum_{k=1}^n,frac{a_i}{a}=frac{sumlimits_{k=1}^n,a_k}{a}=frac{a}{a}=1,.$$
By the Weighted AM-GM Inequality, we have
$$c=sum_{k=1}^n,frac{a_k}{a},left(frac{a,x_k}{a_k}right)geq prod_{k=1}^n,left(frac{a,x_k}{a_k}right)^{frac{a_k}{a}},.$$
Take logarithm on both sides of the inequality above, we get
$$ln(c)geq sum_{k=1}^n,frac{a_k}{a},lnleft(frac{a,x_k}{a_k}right)=frac{1}{a},sum_{k=1}^n,Big(a_k,lnleft(x_kright)-a_k,lnleft(a_kright)+a_k,ln(a)Big),.$$
Ergo,
$$sum_{k=1}^n,a_k,lnleft(x_kright)leq a,ln(c)-left(sum_{k=1}^n,a_kright),ln(a)+sum_{k=1}^n,a_k,lnleft(a_kright)=a,lnleft(frac{c}{a}right)+sum_{k=1}^n,a_k,lnleft(a_kright),.$$
Note that inequality above becomes an equality if and only if $$frac{x_1}{a_1}=frac{x_2}{a_2}=ldots=frac{x_n}{a_n}=frac{c}{a},,$$
or equivalently,
$$left(x_1,x_2,ldots,x_nright)=left(frac{c,a_1}{a},frac{c,a_2}{a},ldots,frac{c,a_n}{a}right),.$$
This shows that $$p^*= a,lnleft(frac{c}{a}right)+sum_{k=1}^n,a_k,lnleft(a_kright),.$$
I shall come back with a Lagrangian approach tomorrow. However, I now present a solution using the Weighted AM-GM Inequality.
We have that
$$sum_{k=1}^n,frac{a_k}{a},left(frac{a,x_k}{a_k}right)=sum_{k=1}^n,x_k=c,,$$
with
$$sum_{k=1}^n,frac{a_i}{a}=frac{sumlimits_{k=1}^n,a_k}{a}=frac{a}{a}=1,.$$
By the Weighted AM-GM Inequality, we have
$$c=sum_{k=1}^n,frac{a_k}{a},left(frac{a,x_k}{a_k}right)geq prod_{k=1}^n,left(frac{a,x_k}{a_k}right)^{frac{a_k}{a}},.$$
Take logarithm on both sides of the inequality above, we get
$$ln(c)geq sum_{k=1}^n,frac{a_k}{a},lnleft(frac{a,x_k}{a_k}right)=frac{1}{a},sum_{k=1}^n,Big(a_k,lnleft(x_kright)-a_k,lnleft(a_kright)+a_k,ln(a)Big),.$$
Ergo,
$$sum_{k=1}^n,a_k,lnleft(x_kright)leq a,ln(c)-left(sum_{k=1}^n,a_kright),ln(a)+sum_{k=1}^n,a_k,lnleft(a_kright)=a,lnleft(frac{c}{a}right)+sum_{k=1}^n,a_k,lnleft(a_kright),.$$
Note that inequality above becomes an equality if and only if $$frac{x_1}{a_1}=frac{x_2}{a_2}=ldots=frac{x_n}{a_n}=frac{c}{a},,$$
or equivalently,
$$left(x_1,x_2,ldots,x_nright)=left(frac{c,a_1}{a},frac{c,a_2}{a},ldots,frac{c,a_n}{a}right),.$$
This shows that $$p^*= a,lnleft(frac{c}{a}right)+sum_{k=1}^n,a_k,lnleft(a_kright),.$$
answered Nov 22 at 18:09
Batominovski
33.5k33292
33.5k33292
add a comment |
add a comment |
up vote
0
down vote
With the Lagrange multiplier method you want to maximize $p(x)=sum a_k ln(x_k) +lambda (c-sum x_k)$.
Differentiating w.r.t. the $x$'s and setting equal to zero gives $frac{a_k}{x_k}=lambda$.
Imposing the constraint $c=sum x_k=frac{sum a_k}{lambda}=frac{a}{lambda}$. It follows that $lambda=a/c$.
So $x_k=frac{a_k }{ lambda}=frac{c a_k}{a}$.
So $p^*=sum a_k ln(x_k)=sum a_k ln(frac{c a_k}{a})=sum a_k (ln(frac{c}{a}) + ln(a_k))=aln(frac{c}{a})+sum a_k ln(a_k)$
add a comment |
up vote
0
down vote
With the Lagrange multiplier method you want to maximize $p(x)=sum a_k ln(x_k) +lambda (c-sum x_k)$.
Differentiating w.r.t. the $x$'s and setting equal to zero gives $frac{a_k}{x_k}=lambda$.
Imposing the constraint $c=sum x_k=frac{sum a_k}{lambda}=frac{a}{lambda}$. It follows that $lambda=a/c$.
So $x_k=frac{a_k }{ lambda}=frac{c a_k}{a}$.
So $p^*=sum a_k ln(x_k)=sum a_k ln(frac{c a_k}{a})=sum a_k (ln(frac{c}{a}) + ln(a_k))=aln(frac{c}{a})+sum a_k ln(a_k)$
add a comment |
up vote
0
down vote
up vote
0
down vote
With the Lagrange multiplier method you want to maximize $p(x)=sum a_k ln(x_k) +lambda (c-sum x_k)$.
Differentiating w.r.t. the $x$'s and setting equal to zero gives $frac{a_k}{x_k}=lambda$.
Imposing the constraint $c=sum x_k=frac{sum a_k}{lambda}=frac{a}{lambda}$. It follows that $lambda=a/c$.
So $x_k=frac{a_k }{ lambda}=frac{c a_k}{a}$.
So $p^*=sum a_k ln(x_k)=sum a_k ln(frac{c a_k}{a})=sum a_k (ln(frac{c}{a}) + ln(a_k))=aln(frac{c}{a})+sum a_k ln(a_k)$
With the Lagrange multiplier method you want to maximize $p(x)=sum a_k ln(x_k) +lambda (c-sum x_k)$.
Differentiating w.r.t. the $x$'s and setting equal to zero gives $frac{a_k}{x_k}=lambda$.
Imposing the constraint $c=sum x_k=frac{sum a_k}{lambda}=frac{a}{lambda}$. It follows that $lambda=a/c$.
So $x_k=frac{a_k }{ lambda}=frac{c a_k}{a}$.
So $p^*=sum a_k ln(x_k)=sum a_k ln(frac{c a_k}{a})=sum a_k (ln(frac{c}{a}) + ln(a_k))=aln(frac{c}{a})+sum a_k ln(a_k)$
answered Nov 22 at 18:37
user121049
1,352164
1,352164
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998812%2fmaximizing-a-weighted-sum-of-logarithms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Try the KKT approach.
– LinAlg
Nov 14 at 21:36
@LinAlg what's a good resource for KKT? I'm not super familiar.
– mmam
Nov 14 at 22:08
en.wikipedia.org/wiki/…
– LinAlg
Nov 14 at 23:02