Multivariable Maclaurin Series
up vote
0
down vote
favorite
Find Maclaurin series for
a) $cos(x + y)$
b) $frac{log(1 + x)}{(1 + y)}$.
Honestly, I'm really just confused about the process of finding a Taylor series expansion for multivariate equation.
sequences-and-series multivariable-calculus
add a comment |
up vote
0
down vote
favorite
Find Maclaurin series for
a) $cos(x + y)$
b) $frac{log(1 + x)}{(1 + y)}$.
Honestly, I'm really just confused about the process of finding a Taylor series expansion for multivariate equation.
sequences-and-series multivariable-calculus
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Find Maclaurin series for
a) $cos(x + y)$
b) $frac{log(1 + x)}{(1 + y)}$.
Honestly, I'm really just confused about the process of finding a Taylor series expansion for multivariate equation.
sequences-and-series multivariable-calculus
Find Maclaurin series for
a) $cos(x + y)$
b) $frac{log(1 + x)}{(1 + y)}$.
Honestly, I'm really just confused about the process of finding a Taylor series expansion for multivariate equation.
sequences-and-series multivariable-calculus
sequences-and-series multivariable-calculus
edited Nov 13 '14 at 9:27
Swapnil Tripathi
3,04621736
3,04621736
asked Nov 13 '14 at 8:59
Katie
1
1
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
0
down vote
HINT:
Consider the general formula, try relating it to single variable formula of Taylor's series.
$f(x,y)=f(x_0,y_0)$
$$+frac{partial f(x_0,y_0)}{partial x}(x-x_0)+frac{partial f(x_0,y_0)}{partial y}(y-y_0)quad Rightarrow Order 1$$$
$$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$
And repeat this for higher orders.
For Maclaurin's the formula is much more simpler as $x_0=y_0=0$
Do you still have a problem evaluating the thing? Tell me where you're struck.
In the 2nd order why $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$$ instead of $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2bigg) +frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0) quad Rightarrow Order 2$$?
– KYHSGeekCode
Sep 2 at 14:42
add a comment |
up vote
0
down vote
Try this expression:
$$f(x,y)=sum^infty_{k=0}sum^k_{i=0} frac{(x-a)^{k-i}(y-b)^i}{(k-i)!i!} left[frac{partial^kf}{partial x^{k-i} partial y^i}right]_{(a=0,b=0)}$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1019792%2fmultivariable-maclaurin-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
HINT:
Consider the general formula, try relating it to single variable formula of Taylor's series.
$f(x,y)=f(x_0,y_0)$
$$+frac{partial f(x_0,y_0)}{partial x}(x-x_0)+frac{partial f(x_0,y_0)}{partial y}(y-y_0)quad Rightarrow Order 1$$$
$$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$
And repeat this for higher orders.
For Maclaurin's the formula is much more simpler as $x_0=y_0=0$
Do you still have a problem evaluating the thing? Tell me where you're struck.
In the 2nd order why $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$$ instead of $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2bigg) +frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0) quad Rightarrow Order 2$$?
– KYHSGeekCode
Sep 2 at 14:42
add a comment |
up vote
0
down vote
HINT:
Consider the general formula, try relating it to single variable formula of Taylor's series.
$f(x,y)=f(x_0,y_0)$
$$+frac{partial f(x_0,y_0)}{partial x}(x-x_0)+frac{partial f(x_0,y_0)}{partial y}(y-y_0)quad Rightarrow Order 1$$$
$$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$
And repeat this for higher orders.
For Maclaurin's the formula is much more simpler as $x_0=y_0=0$
Do you still have a problem evaluating the thing? Tell me where you're struck.
In the 2nd order why $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$$ instead of $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2bigg) +frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0) quad Rightarrow Order 2$$?
– KYHSGeekCode
Sep 2 at 14:42
add a comment |
up vote
0
down vote
up vote
0
down vote
HINT:
Consider the general formula, try relating it to single variable formula of Taylor's series.
$f(x,y)=f(x_0,y_0)$
$$+frac{partial f(x_0,y_0)}{partial x}(x-x_0)+frac{partial f(x_0,y_0)}{partial y}(y-y_0)quad Rightarrow Order 1$$$
$$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$
And repeat this for higher orders.
For Maclaurin's the formula is much more simpler as $x_0=y_0=0$
Do you still have a problem evaluating the thing? Tell me where you're struck.
HINT:
Consider the general formula, try relating it to single variable formula of Taylor's series.
$f(x,y)=f(x_0,y_0)$
$$+frac{partial f(x_0,y_0)}{partial x}(x-x_0)+frac{partial f(x_0,y_0)}{partial y}(y-y_0)quad Rightarrow Order 1$$$
$$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$
And repeat this for higher orders.
For Maclaurin's the formula is much more simpler as $x_0=y_0=0$
Do you still have a problem evaluating the thing? Tell me where you're struck.
answered Nov 13 '14 at 13:25
Swapnil Tripathi
3,04621736
3,04621736
In the 2nd order why $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$$ instead of $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2bigg) +frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0) quad Rightarrow Order 2$$?
– KYHSGeekCode
Sep 2 at 14:42
add a comment |
In the 2nd order why $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$$ instead of $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2bigg) +frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0) quad Rightarrow Order 2$$?
– KYHSGeekCode
Sep 2 at 14:42
In the 2nd order why $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$$ instead of $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2bigg) +frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0) quad Rightarrow Order 2$$?
– KYHSGeekCode
Sep 2 at 14:42
In the 2nd order why $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2+frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0)bigg) quad Rightarrow Order 2$$ instead of $$+frac{1}{2} bigg(frac{partial^2 f(x_0,y_0)}{partial x^2}(x-x_0)^2+frac{partial^2 f(x_0,y_0)}{partial y^2}(y-y_0)^2bigg) +frac{partial^2 f(x_0,y_0)}{partial xpartial y}(x-x_0)(y-y_0) quad Rightarrow Order 2$$?
– KYHSGeekCode
Sep 2 at 14:42
add a comment |
up vote
0
down vote
Try this expression:
$$f(x,y)=sum^infty_{k=0}sum^k_{i=0} frac{(x-a)^{k-i}(y-b)^i}{(k-i)!i!} left[frac{partial^kf}{partial x^{k-i} partial y^i}right]_{(a=0,b=0)}$$
add a comment |
up vote
0
down vote
Try this expression:
$$f(x,y)=sum^infty_{k=0}sum^k_{i=0} frac{(x-a)^{k-i}(y-b)^i}{(k-i)!i!} left[frac{partial^kf}{partial x^{k-i} partial y^i}right]_{(a=0,b=0)}$$
add a comment |
up vote
0
down vote
up vote
0
down vote
Try this expression:
$$f(x,y)=sum^infty_{k=0}sum^k_{i=0} frac{(x-a)^{k-i}(y-b)^i}{(k-i)!i!} left[frac{partial^kf}{partial x^{k-i} partial y^i}right]_{(a=0,b=0)}$$
Try this expression:
$$f(x,y)=sum^infty_{k=0}sum^k_{i=0} frac{(x-a)^{k-i}(y-b)^i}{(k-i)!i!} left[frac{partial^kf}{partial x^{k-i} partial y^i}right]_{(a=0,b=0)}$$
answered Sep 2 at 14:53
KYHSGeekCode
302112
302112
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1019792%2fmultivariable-maclaurin-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown