Integral with Bessel function and sine.












0












$begingroup$


How to evaluate the integral with Bessel function:



$int_0^{2pi}J_1(xsintheta)sin^2theta dtheta$



Thank you in advance.










share|cite|improve this question









$endgroup$












  • $begingroup$
    It is $0$. $ $ $ $
    $endgroup$
    – Kemono Chen
    Dec 5 '18 at 3:23












  • $begingroup$
    Use the series form of $J_1$ and change the sum and integral, then prove $$int_0^{2pi}sin^{2k+3}t dt=0$$
    $endgroup$
    – Nosrati
    Dec 5 '18 at 4:18
















0












$begingroup$


How to evaluate the integral with Bessel function:



$int_0^{2pi}J_1(xsintheta)sin^2theta dtheta$



Thank you in advance.










share|cite|improve this question









$endgroup$












  • $begingroup$
    It is $0$. $ $ $ $
    $endgroup$
    – Kemono Chen
    Dec 5 '18 at 3:23












  • $begingroup$
    Use the series form of $J_1$ and change the sum and integral, then prove $$int_0^{2pi}sin^{2k+3}t dt=0$$
    $endgroup$
    – Nosrati
    Dec 5 '18 at 4:18














0












0








0





$begingroup$


How to evaluate the integral with Bessel function:



$int_0^{2pi}J_1(xsintheta)sin^2theta dtheta$



Thank you in advance.










share|cite|improve this question









$endgroup$




How to evaluate the integral with Bessel function:



$int_0^{2pi}J_1(xsintheta)sin^2theta dtheta$



Thank you in advance.







definite-integrals bessel-functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 5 '18 at 2:49









ecookecook

109110




109110












  • $begingroup$
    It is $0$. $ $ $ $
    $endgroup$
    – Kemono Chen
    Dec 5 '18 at 3:23












  • $begingroup$
    Use the series form of $J_1$ and change the sum and integral, then prove $$int_0^{2pi}sin^{2k+3}t dt=0$$
    $endgroup$
    – Nosrati
    Dec 5 '18 at 4:18


















  • $begingroup$
    It is $0$. $ $ $ $
    $endgroup$
    – Kemono Chen
    Dec 5 '18 at 3:23












  • $begingroup$
    Use the series form of $J_1$ and change the sum and integral, then prove $$int_0^{2pi}sin^{2k+3}t dt=0$$
    $endgroup$
    – Nosrati
    Dec 5 '18 at 4:18
















$begingroup$
It is $0$. $ $ $ $
$endgroup$
– Kemono Chen
Dec 5 '18 at 3:23






$begingroup$
It is $0$. $ $ $ $
$endgroup$
– Kemono Chen
Dec 5 '18 at 3:23














$begingroup$
Use the series form of $J_1$ and change the sum and integral, then prove $$int_0^{2pi}sin^{2k+3}t dt=0$$
$endgroup$
– Nosrati
Dec 5 '18 at 4:18




$begingroup$
Use the series form of $J_1$ and change the sum and integral, then prove $$int_0^{2pi}sin^{2k+3}t dt=0$$
$endgroup$
– Nosrati
Dec 5 '18 at 4:18










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026528%2fintegral-with-bessel-function-and-sine%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026528%2fintegral-with-bessel-function-and-sine%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei