Computing conditional expenctation of independent uniform rv
up vote
3
down vote
favorite
Suppose $X$ and $Y$ are two independent uniform on [0,1] . Compute
$$ E[X^2 mid X+Y = a ] $$
where $a in mathbb{R}$ but $0<a<2$
Try.
First, we can find density of $Z=X^2$. We have
$$ P(X^2 leq z ) = P( - sqrt{z} leq X leq sqrt{z}) = int_{- sqrt{z}}^{sqrt{z}} dx =2 sqrt{z}$$
Therefore,
$$ f_Z(z) = frac{1}{sqrt{z}}$$
Now, here is where the trouble starts since I always get confused when computing the conditional expectation. Do they mean that I need to compute
$$ int int_{sqrt{z}+y=a} z frac{1}{sqrt{z} } dy dz$$
??
probability
add a comment |
up vote
3
down vote
favorite
Suppose $X$ and $Y$ are two independent uniform on [0,1] . Compute
$$ E[X^2 mid X+Y = a ] $$
where $a in mathbb{R}$ but $0<a<2$
Try.
First, we can find density of $Z=X^2$. We have
$$ P(X^2 leq z ) = P( - sqrt{z} leq X leq sqrt{z}) = int_{- sqrt{z}}^{sqrt{z}} dx =2 sqrt{z}$$
Therefore,
$$ f_Z(z) = frac{1}{sqrt{z}}$$
Now, here is where the trouble starts since I always get confused when computing the conditional expectation. Do they mean that I need to compute
$$ int int_{sqrt{z}+y=a} z frac{1}{sqrt{z} } dy dz$$
??
probability
1
@gd1035 That's wrong. Actually it should be $E([a-Y]^2 | X+Y=a)$ .. which of course is not easier than the original :-)
– leonbloy
3 hours ago
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Suppose $X$ and $Y$ are two independent uniform on [0,1] . Compute
$$ E[X^2 mid X+Y = a ] $$
where $a in mathbb{R}$ but $0<a<2$
Try.
First, we can find density of $Z=X^2$. We have
$$ P(X^2 leq z ) = P( - sqrt{z} leq X leq sqrt{z}) = int_{- sqrt{z}}^{sqrt{z}} dx =2 sqrt{z}$$
Therefore,
$$ f_Z(z) = frac{1}{sqrt{z}}$$
Now, here is where the trouble starts since I always get confused when computing the conditional expectation. Do they mean that I need to compute
$$ int int_{sqrt{z}+y=a} z frac{1}{sqrt{z} } dy dz$$
??
probability
Suppose $X$ and $Y$ are two independent uniform on [0,1] . Compute
$$ E[X^2 mid X+Y = a ] $$
where $a in mathbb{R}$ but $0<a<2$
Try.
First, we can find density of $Z=X^2$. We have
$$ P(X^2 leq z ) = P( - sqrt{z} leq X leq sqrt{z}) = int_{- sqrt{z}}^{sqrt{z}} dx =2 sqrt{z}$$
Therefore,
$$ f_Z(z) = frac{1}{sqrt{z}}$$
Now, here is where the trouble starts since I always get confused when computing the conditional expectation. Do they mean that I need to compute
$$ int int_{sqrt{z}+y=a} z frac{1}{sqrt{z} } dy dz$$
??
probability
probability
asked 4 hours ago
Jimmy Sabater
1,851218
1,851218
1
@gd1035 That's wrong. Actually it should be $E([a-Y]^2 | X+Y=a)$ .. which of course is not easier than the original :-)
– leonbloy
3 hours ago
add a comment |
1
@gd1035 That's wrong. Actually it should be $E([a-Y]^2 | X+Y=a)$ .. which of course is not easier than the original :-)
– leonbloy
3 hours ago
1
1
@gd1035 That's wrong. Actually it should be $E([a-Y]^2 | X+Y=a)$ .. which of course is not easier than the original :-)
– leonbloy
3 hours ago
@gd1035 That's wrong. Actually it should be $E([a-Y]^2 | X+Y=a)$ .. which of course is not easier than the original :-)
– leonbloy
3 hours ago
add a comment |
1 Answer
1
active
oldest
votes
up vote
5
down vote
Find joint density function of $U=X$ and $V=X+Y$ via transformation rule. Then we have
$$
f_{U,V}(u,v) = 1_{{0<u<1,; 0<v-u<1}}.
$$ We can compute conditional pdf $f_{U|V}(u|v)$ as follows.
$$
f_{U|V}(u|v)=frac{f_{U,V}(u,v)}{f_V(v)} = begin{cases}frac{1}{v}1_{{0<u<1,; 0<v-u<1}} text{ for }vin (0,1)\frac{1}{2-v}1_{{0<u<1,; 0<v-u<1}}text{ for }vin (1,2)
end{cases}$$What is left is to actually calculate $E[U^2|V=v]$ as follows.
$$
E[U^2|V=v] = int u^2f_{U|V}(u|v)du = frac{1}{v}int_{{0<u<1,; v-1<u<v}} u^2 du = frac{1}{v}int_0^v u^2du = frac{v^2}{3}
$$ for $vin (0,1)$ and
$$
frac{1}{2-v}int_{{0<u<1,; v-1<u<v}} u^2 du = frac{1}{2-v}int_{v-1}^1 u^2 du = frac{1}{2-v}frac{u^3}{3}Big|^{u=1}_{u=v-1} = frac{v^2-v+1}{3}.
$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042167%2fcomputing-conditional-expenctation-of-independent-uniform-rv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
Find joint density function of $U=X$ and $V=X+Y$ via transformation rule. Then we have
$$
f_{U,V}(u,v) = 1_{{0<u<1,; 0<v-u<1}}.
$$ We can compute conditional pdf $f_{U|V}(u|v)$ as follows.
$$
f_{U|V}(u|v)=frac{f_{U,V}(u,v)}{f_V(v)} = begin{cases}frac{1}{v}1_{{0<u<1,; 0<v-u<1}} text{ for }vin (0,1)\frac{1}{2-v}1_{{0<u<1,; 0<v-u<1}}text{ for }vin (1,2)
end{cases}$$What is left is to actually calculate $E[U^2|V=v]$ as follows.
$$
E[U^2|V=v] = int u^2f_{U|V}(u|v)du = frac{1}{v}int_{{0<u<1,; v-1<u<v}} u^2 du = frac{1}{v}int_0^v u^2du = frac{v^2}{3}
$$ for $vin (0,1)$ and
$$
frac{1}{2-v}int_{{0<u<1,; v-1<u<v}} u^2 du = frac{1}{2-v}int_{v-1}^1 u^2 du = frac{1}{2-v}frac{u^3}{3}Big|^{u=1}_{u=v-1} = frac{v^2-v+1}{3}.
$$
add a comment |
up vote
5
down vote
Find joint density function of $U=X$ and $V=X+Y$ via transformation rule. Then we have
$$
f_{U,V}(u,v) = 1_{{0<u<1,; 0<v-u<1}}.
$$ We can compute conditional pdf $f_{U|V}(u|v)$ as follows.
$$
f_{U|V}(u|v)=frac{f_{U,V}(u,v)}{f_V(v)} = begin{cases}frac{1}{v}1_{{0<u<1,; 0<v-u<1}} text{ for }vin (0,1)\frac{1}{2-v}1_{{0<u<1,; 0<v-u<1}}text{ for }vin (1,2)
end{cases}$$What is left is to actually calculate $E[U^2|V=v]$ as follows.
$$
E[U^2|V=v] = int u^2f_{U|V}(u|v)du = frac{1}{v}int_{{0<u<1,; v-1<u<v}} u^2 du = frac{1}{v}int_0^v u^2du = frac{v^2}{3}
$$ for $vin (0,1)$ and
$$
frac{1}{2-v}int_{{0<u<1,; v-1<u<v}} u^2 du = frac{1}{2-v}int_{v-1}^1 u^2 du = frac{1}{2-v}frac{u^3}{3}Big|^{u=1}_{u=v-1} = frac{v^2-v+1}{3}.
$$
add a comment |
up vote
5
down vote
up vote
5
down vote
Find joint density function of $U=X$ and $V=X+Y$ via transformation rule. Then we have
$$
f_{U,V}(u,v) = 1_{{0<u<1,; 0<v-u<1}}.
$$ We can compute conditional pdf $f_{U|V}(u|v)$ as follows.
$$
f_{U|V}(u|v)=frac{f_{U,V}(u,v)}{f_V(v)} = begin{cases}frac{1}{v}1_{{0<u<1,; 0<v-u<1}} text{ for }vin (0,1)\frac{1}{2-v}1_{{0<u<1,; 0<v-u<1}}text{ for }vin (1,2)
end{cases}$$What is left is to actually calculate $E[U^2|V=v]$ as follows.
$$
E[U^2|V=v] = int u^2f_{U|V}(u|v)du = frac{1}{v}int_{{0<u<1,; v-1<u<v}} u^2 du = frac{1}{v}int_0^v u^2du = frac{v^2}{3}
$$ for $vin (0,1)$ and
$$
frac{1}{2-v}int_{{0<u<1,; v-1<u<v}} u^2 du = frac{1}{2-v}int_{v-1}^1 u^2 du = frac{1}{2-v}frac{u^3}{3}Big|^{u=1}_{u=v-1} = frac{v^2-v+1}{3}.
$$
Find joint density function of $U=X$ and $V=X+Y$ via transformation rule. Then we have
$$
f_{U,V}(u,v) = 1_{{0<u<1,; 0<v-u<1}}.
$$ We can compute conditional pdf $f_{U|V}(u|v)$ as follows.
$$
f_{U|V}(u|v)=frac{f_{U,V}(u,v)}{f_V(v)} = begin{cases}frac{1}{v}1_{{0<u<1,; 0<v-u<1}} text{ for }vin (0,1)\frac{1}{2-v}1_{{0<u<1,; 0<v-u<1}}text{ for }vin (1,2)
end{cases}$$What is left is to actually calculate $E[U^2|V=v]$ as follows.
$$
E[U^2|V=v] = int u^2f_{U|V}(u|v)du = frac{1}{v}int_{{0<u<1,; v-1<u<v}} u^2 du = frac{1}{v}int_0^v u^2du = frac{v^2}{3}
$$ for $vin (0,1)$ and
$$
frac{1}{2-v}int_{{0<u<1,; v-1<u<v}} u^2 du = frac{1}{2-v}int_{v-1}^1 u^2 du = frac{1}{2-v}frac{u^3}{3}Big|^{u=1}_{u=v-1} = frac{v^2-v+1}{3}.
$$
answered 3 hours ago
Song
3,020214
3,020214
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042167%2fcomputing-conditional-expenctation-of-independent-uniform-rv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
@gd1035 That's wrong. Actually it should be $E([a-Y]^2 | X+Y=a)$ .. which of course is not easier than the original :-)
– leonbloy
3 hours ago