Find the sup of an integral succession
up vote
0
down vote
favorite
Let
$$
a_n=int^pi_0e^{-nx}sin(n^2x)dx
$$
find $sup{a_n:ninmathbb N}$
I found myself the solution.
Integrating twice by parts we have
$$
a_n=nint^pi_0e^{-nx}cos(n^2x)dx=left[-e^{-nx}cos(n^2x)right]^pi_{x=0}-n^2int^pi_0e^{-nx}sin(n^2x)dx=1-e^{-npi}cos(n^2pi)-n^2a_n\
a_n=frac{1-e^{-npi}cos(n^2pi)}{1+n^2}=frac{1-(-1)^ne^{-npi}}{1+n^2}\
a_{2k}=frac{1-e^{-2kpi}}{1+(2k)^2}\
a_{2k+1}=frac{1+e^{-(2k+1)pi}}{1+(2k+1)^2}
$$
then
$$
a_{2k}<a_{2k-1}<a_1=frac{1+e^{-pi}}{2}
$$
calculus integration supremum-and-infimum
add a comment |
up vote
0
down vote
favorite
Let
$$
a_n=int^pi_0e^{-nx}sin(n^2x)dx
$$
find $sup{a_n:ninmathbb N}$
I found myself the solution.
Integrating twice by parts we have
$$
a_n=nint^pi_0e^{-nx}cos(n^2x)dx=left[-e^{-nx}cos(n^2x)right]^pi_{x=0}-n^2int^pi_0e^{-nx}sin(n^2x)dx=1-e^{-npi}cos(n^2pi)-n^2a_n\
a_n=frac{1-e^{-npi}cos(n^2pi)}{1+n^2}=frac{1-(-1)^ne^{-npi}}{1+n^2}\
a_{2k}=frac{1-e^{-2kpi}}{1+(2k)^2}\
a_{2k+1}=frac{1+e^{-(2k+1)pi}}{1+(2k+1)^2}
$$
then
$$
a_{2k}<a_{2k-1}<a_1=frac{1+e^{-pi}}{2}
$$
calculus integration supremum-and-infimum
1
Did you compute $a_n$ ? If you did, what I hope and wish, include your result in the post.
– Claude Leibovici
Nov 22 at 11:23
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let
$$
a_n=int^pi_0e^{-nx}sin(n^2x)dx
$$
find $sup{a_n:ninmathbb N}$
I found myself the solution.
Integrating twice by parts we have
$$
a_n=nint^pi_0e^{-nx}cos(n^2x)dx=left[-e^{-nx}cos(n^2x)right]^pi_{x=0}-n^2int^pi_0e^{-nx}sin(n^2x)dx=1-e^{-npi}cos(n^2pi)-n^2a_n\
a_n=frac{1-e^{-npi}cos(n^2pi)}{1+n^2}=frac{1-(-1)^ne^{-npi}}{1+n^2}\
a_{2k}=frac{1-e^{-2kpi}}{1+(2k)^2}\
a_{2k+1}=frac{1+e^{-(2k+1)pi}}{1+(2k+1)^2}
$$
then
$$
a_{2k}<a_{2k-1}<a_1=frac{1+e^{-pi}}{2}
$$
calculus integration supremum-and-infimum
Let
$$
a_n=int^pi_0e^{-nx}sin(n^2x)dx
$$
find $sup{a_n:ninmathbb N}$
I found myself the solution.
Integrating twice by parts we have
$$
a_n=nint^pi_0e^{-nx}cos(n^2x)dx=left[-e^{-nx}cos(n^2x)right]^pi_{x=0}-n^2int^pi_0e^{-nx}sin(n^2x)dx=1-e^{-npi}cos(n^2pi)-n^2a_n\
a_n=frac{1-e^{-npi}cos(n^2pi)}{1+n^2}=frac{1-(-1)^ne^{-npi}}{1+n^2}\
a_{2k}=frac{1-e^{-2kpi}}{1+(2k)^2}\
a_{2k+1}=frac{1+e^{-(2k+1)pi}}{1+(2k+1)^2}
$$
then
$$
a_{2k}<a_{2k-1}<a_1=frac{1+e^{-pi}}{2}
$$
calculus integration supremum-and-infimum
calculus integration supremum-and-infimum
edited Nov 23 at 3:13
user302797
19.7k92252
19.7k92252
asked Nov 22 at 11:07
P De Donato
3567
3567
1
Did you compute $a_n$ ? If you did, what I hope and wish, include your result in the post.
– Claude Leibovici
Nov 22 at 11:23
add a comment |
1
Did you compute $a_n$ ? If you did, what I hope and wish, include your result in the post.
– Claude Leibovici
Nov 22 at 11:23
1
1
Did you compute $a_n$ ? If you did, what I hope and wish, include your result in the post.
– Claude Leibovici
Nov 22 at 11:23
Did you compute $a_n$ ? If you did, what I hope and wish, include your result in the post.
– Claude Leibovici
Nov 22 at 11:23
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
I found myself the solution.
Integrating twice by parts we have
$$
a_n=nint^pi_0e^{-nx}cos(n^2x)dx=left[-e^{-nx}cos(n^2x)right]^pi_{x=0}-n^2int^pi_0e^{-nx}sin(n^2x)dx=1-e^{-npi}cos(n^2pi)-n^2a_n\
a_n=frac{1-e^{-npi}cos(n^2pi)}{1+n^2}=frac{1-(-1)^ne^{-npi}}{1+n^2}\
a_{2k}=frac{1-e^{-2kpi}}{1+(2k)^2}\
a_{2k+1}=frac{1+e^{-(2k+1)pi}}{1+(2k+1)^2}
$$
then
$$
a_{2k}<a_{2k-1}<a_1=frac{1+e^{-pi}}{2}
$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009008%2ffind-the-sup-of-an-integral-succession%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
I found myself the solution.
Integrating twice by parts we have
$$
a_n=nint^pi_0e^{-nx}cos(n^2x)dx=left[-e^{-nx}cos(n^2x)right]^pi_{x=0}-n^2int^pi_0e^{-nx}sin(n^2x)dx=1-e^{-npi}cos(n^2pi)-n^2a_n\
a_n=frac{1-e^{-npi}cos(n^2pi)}{1+n^2}=frac{1-(-1)^ne^{-npi}}{1+n^2}\
a_{2k}=frac{1-e^{-2kpi}}{1+(2k)^2}\
a_{2k+1}=frac{1+e^{-(2k+1)pi}}{1+(2k+1)^2}
$$
then
$$
a_{2k}<a_{2k-1}<a_1=frac{1+e^{-pi}}{2}
$$
add a comment |
up vote
0
down vote
accepted
I found myself the solution.
Integrating twice by parts we have
$$
a_n=nint^pi_0e^{-nx}cos(n^2x)dx=left[-e^{-nx}cos(n^2x)right]^pi_{x=0}-n^2int^pi_0e^{-nx}sin(n^2x)dx=1-e^{-npi}cos(n^2pi)-n^2a_n\
a_n=frac{1-e^{-npi}cos(n^2pi)}{1+n^2}=frac{1-(-1)^ne^{-npi}}{1+n^2}\
a_{2k}=frac{1-e^{-2kpi}}{1+(2k)^2}\
a_{2k+1}=frac{1+e^{-(2k+1)pi}}{1+(2k+1)^2}
$$
then
$$
a_{2k}<a_{2k-1}<a_1=frac{1+e^{-pi}}{2}
$$
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
I found myself the solution.
Integrating twice by parts we have
$$
a_n=nint^pi_0e^{-nx}cos(n^2x)dx=left[-e^{-nx}cos(n^2x)right]^pi_{x=0}-n^2int^pi_0e^{-nx}sin(n^2x)dx=1-e^{-npi}cos(n^2pi)-n^2a_n\
a_n=frac{1-e^{-npi}cos(n^2pi)}{1+n^2}=frac{1-(-1)^ne^{-npi}}{1+n^2}\
a_{2k}=frac{1-e^{-2kpi}}{1+(2k)^2}\
a_{2k+1}=frac{1+e^{-(2k+1)pi}}{1+(2k+1)^2}
$$
then
$$
a_{2k}<a_{2k-1}<a_1=frac{1+e^{-pi}}{2}
$$
I found myself the solution.
Integrating twice by parts we have
$$
a_n=nint^pi_0e^{-nx}cos(n^2x)dx=left[-e^{-nx}cos(n^2x)right]^pi_{x=0}-n^2int^pi_0e^{-nx}sin(n^2x)dx=1-e^{-npi}cos(n^2pi)-n^2a_n\
a_n=frac{1-e^{-npi}cos(n^2pi)}{1+n^2}=frac{1-(-1)^ne^{-npi}}{1+n^2}\
a_{2k}=frac{1-e^{-2kpi}}{1+(2k)^2}\
a_{2k+1}=frac{1+e^{-(2k+1)pi}}{1+(2k+1)^2}
$$
then
$$
a_{2k}<a_{2k-1}<a_1=frac{1+e^{-pi}}{2}
$$
answered Nov 22 at 21:29
P De Donato
3567
3567
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009008%2ffind-the-sup-of-an-integral-succession%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Did you compute $a_n$ ? If you did, what I hope and wish, include your result in the post.
– Claude Leibovici
Nov 22 at 11:23