Pull back of wedge of differential forms











up vote
1
down vote

favorite
1












Suppose that $phi : M rightarrow N$ is a smooth map between differential manifolds. Let $omega, eta$ be forms on $N$. Is there an easy proof for the fact that
$$phi^*(omega wedge eta) = phi^* omega wedge phi^* eta?$$
In other words, $phi^* : Omega(N) rightarrow Omega(M)$ is a graded algebra homomorphism. (By easy, I mean does not require expanding both sides using the definition.)










share|cite|improve this question




























    up vote
    1
    down vote

    favorite
    1












    Suppose that $phi : M rightarrow N$ is a smooth map between differential manifolds. Let $omega, eta$ be forms on $N$. Is there an easy proof for the fact that
    $$phi^*(omega wedge eta) = phi^* omega wedge phi^* eta?$$
    In other words, $phi^* : Omega(N) rightarrow Omega(M)$ is a graded algebra homomorphism. (By easy, I mean does not require expanding both sides using the definition.)










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      Suppose that $phi : M rightarrow N$ is a smooth map between differential manifolds. Let $omega, eta$ be forms on $N$. Is there an easy proof for the fact that
      $$phi^*(omega wedge eta) = phi^* omega wedge phi^* eta?$$
      In other words, $phi^* : Omega(N) rightarrow Omega(M)$ is a graded algebra homomorphism. (By easy, I mean does not require expanding both sides using the definition.)










      share|cite|improve this question















      Suppose that $phi : M rightarrow N$ is a smooth map between differential manifolds. Let $omega, eta$ be forms on $N$. Is there an easy proof for the fact that
      $$phi^*(omega wedge eta) = phi^* omega wedge phi^* eta?$$
      In other words, $phi^* : Omega(N) rightarrow Omega(M)$ is a graded algebra homomorphism. (By easy, I mean does not require expanding both sides using the definition.)







      differential-geometry differential-forms






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 19 '17 at 0:48









      Paul

      15.9k33666




      15.9k33666










      asked Mar 18 '17 at 23:33









      An Hoa

      1,050511




      1,050511






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          I've read your question wrong, here is a more general answer you want, I guess.



          We will use this following proprieties:



          $$phi^*(omega_1+omega_2)= phi^*(omega_1)+phi^*(omega_2)$$



          $$omega wedge eta = frac {(m+l)!}{m!l!}Alt(omega otimes eta) $$



          $$Alt(omega otimes eta)=frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma $$



          By that, $$phi^*(omega wedge eta)= frac {(m+l)!}{m!l!}phi^*(Alt(omega otimes eta)) = frac {(m+l)!}{m!l!}phi^*(frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma) =\ =frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma $$



          Now if we prove that $phi^*(omega otimes eta)circsigma = (phi^*omega otimes phi^*eta)circsigma $, we have that



          $$frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma = frac {1}{m!l!} sum_{sigma in S_ {m+l }} (phi^*omega otimesphi^*eta)circsigma = phi^*(omega)wedge phi^*(eta)$$



          Proving that $phi^*(omega otimes eta)=(phi^*omega otimes phi^*eta)$ is easy.






          share|cite|improve this answer






























            up vote
            2
            down vote













            Let $p$ be a point $M$, $v,w in T_pM$ and $omega_1, omega_2, omega$ and $eta $ be 1-forms of $M$ . We have to use that:
            $$(omega_1 wedge omega_2)_p(v,w) =
            begin{vmatrix}
            {omega_1}_p(v) & {omega_1}_p(w) \
            {omega_2}_p(v) & {omega_2}_p(w)
            end{vmatrix}$$



            $phi^*(omega wedgeeta)_p(v,w)
            = (omega wedge eta)_{phi (p)}(d phi_p(v),d phi_p(w)) = begin{vmatrix}
            {(omega)}_{phi(p)}(d phi_p(v)) & {(omega)}_{phi(p)}(d phi_p(w)) \
            {(eta)}_{phi(p)}(d phi_p(v) & {(eta)}_{phi(p)}(d phi_p(w))
            end{vmatrix} = begin{vmatrix}
            {(phi^*omega)}_p(v) & {(phi^*omega)}_p(w) \
            {(phi^*eta)}_p(v) & {(phi^*eta)}_p(w)
            end{vmatrix} = (phi^*omega) wedge (phi^*eta)_p(v,w) $.



            So we have $phi^*( omega wedge eta) = phi^*(omega) wedge phi^*(eta).$






            share|cite|improve this answer



















            • 1




              I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
              – EternalBlood
              Mar 19 '17 at 3:05












            • Maybe using this first case, linearity and induction.
              – Danuso Rocha
              Mar 19 '17 at 3:18












            • Thanks for alert me, @EternalBlood. I gave the general answer. :)
              – Danuso Rocha
              Mar 19 '17 at 5:16













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2192907%2fpull-back-of-wedge-of-differential-forms%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote



            accepted










            I've read your question wrong, here is a more general answer you want, I guess.



            We will use this following proprieties:



            $$phi^*(omega_1+omega_2)= phi^*(omega_1)+phi^*(omega_2)$$



            $$omega wedge eta = frac {(m+l)!}{m!l!}Alt(omega otimes eta) $$



            $$Alt(omega otimes eta)=frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma $$



            By that, $$phi^*(omega wedge eta)= frac {(m+l)!}{m!l!}phi^*(Alt(omega otimes eta)) = frac {(m+l)!}{m!l!}phi^*(frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma) =\ =frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma $$



            Now if we prove that $phi^*(omega otimes eta)circsigma = (phi^*omega otimes phi^*eta)circsigma $, we have that



            $$frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma = frac {1}{m!l!} sum_{sigma in S_ {m+l }} (phi^*omega otimesphi^*eta)circsigma = phi^*(omega)wedge phi^*(eta)$$



            Proving that $phi^*(omega otimes eta)=(phi^*omega otimes phi^*eta)$ is easy.






            share|cite|improve this answer



























              up vote
              0
              down vote



              accepted










              I've read your question wrong, here is a more general answer you want, I guess.



              We will use this following proprieties:



              $$phi^*(omega_1+omega_2)= phi^*(omega_1)+phi^*(omega_2)$$



              $$omega wedge eta = frac {(m+l)!}{m!l!}Alt(omega otimes eta) $$



              $$Alt(omega otimes eta)=frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma $$



              By that, $$phi^*(omega wedge eta)= frac {(m+l)!}{m!l!}phi^*(Alt(omega otimes eta)) = frac {(m+l)!}{m!l!}phi^*(frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma) =\ =frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma $$



              Now if we prove that $phi^*(omega otimes eta)circsigma = (phi^*omega otimes phi^*eta)circsigma $, we have that



              $$frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma = frac {1}{m!l!} sum_{sigma in S_ {m+l }} (phi^*omega otimesphi^*eta)circsigma = phi^*(omega)wedge phi^*(eta)$$



              Proving that $phi^*(omega otimes eta)=(phi^*omega otimes phi^*eta)$ is easy.






              share|cite|improve this answer

























                up vote
                0
                down vote



                accepted







                up vote
                0
                down vote



                accepted






                I've read your question wrong, here is a more general answer you want, I guess.



                We will use this following proprieties:



                $$phi^*(omega_1+omega_2)= phi^*(omega_1)+phi^*(omega_2)$$



                $$omega wedge eta = frac {(m+l)!}{m!l!}Alt(omega otimes eta) $$



                $$Alt(omega otimes eta)=frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma $$



                By that, $$phi^*(omega wedge eta)= frac {(m+l)!}{m!l!}phi^*(Alt(omega otimes eta)) = frac {(m+l)!}{m!l!}phi^*(frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma) =\ =frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma $$



                Now if we prove that $phi^*(omega otimes eta)circsigma = (phi^*omega otimes phi^*eta)circsigma $, we have that



                $$frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma = frac {1}{m!l!} sum_{sigma in S_ {m+l }} (phi^*omega otimesphi^*eta)circsigma = phi^*(omega)wedge phi^*(eta)$$



                Proving that $phi^*(omega otimes eta)=(phi^*omega otimes phi^*eta)$ is easy.






                share|cite|improve this answer














                I've read your question wrong, here is a more general answer you want, I guess.



                We will use this following proprieties:



                $$phi^*(omega_1+omega_2)= phi^*(omega_1)+phi^*(omega_2)$$



                $$omega wedge eta = frac {(m+l)!}{m!l!}Alt(omega otimes eta) $$



                $$Alt(omega otimes eta)=frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma $$



                By that, $$phi^*(omega wedge eta)= frac {(m+l)!}{m!l!}phi^*(Alt(omega otimes eta)) = frac {(m+l)!}{m!l!}phi^*(frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma) =\ =frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma $$



                Now if we prove that $phi^*(omega otimes eta)circsigma = (phi^*omega otimes phi^*eta)circsigma $, we have that



                $$frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma = frac {1}{m!l!} sum_{sigma in S_ {m+l }} (phi^*omega otimesphi^*eta)circsigma = phi^*(omega)wedge phi^*(eta)$$



                Proving that $phi^*(omega otimes eta)=(phi^*omega otimes phi^*eta)$ is easy.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 22 at 15:30









                Community

                1




                1










                answered Mar 19 '17 at 5:14









                Danuso Rocha

                1367




                1367






















                    up vote
                    2
                    down vote













                    Let $p$ be a point $M$, $v,w in T_pM$ and $omega_1, omega_2, omega$ and $eta $ be 1-forms of $M$ . We have to use that:
                    $$(omega_1 wedge omega_2)_p(v,w) =
                    begin{vmatrix}
                    {omega_1}_p(v) & {omega_1}_p(w) \
                    {omega_2}_p(v) & {omega_2}_p(w)
                    end{vmatrix}$$



                    $phi^*(omega wedgeeta)_p(v,w)
                    = (omega wedge eta)_{phi (p)}(d phi_p(v),d phi_p(w)) = begin{vmatrix}
                    {(omega)}_{phi(p)}(d phi_p(v)) & {(omega)}_{phi(p)}(d phi_p(w)) \
                    {(eta)}_{phi(p)}(d phi_p(v) & {(eta)}_{phi(p)}(d phi_p(w))
                    end{vmatrix} = begin{vmatrix}
                    {(phi^*omega)}_p(v) & {(phi^*omega)}_p(w) \
                    {(phi^*eta)}_p(v) & {(phi^*eta)}_p(w)
                    end{vmatrix} = (phi^*omega) wedge (phi^*eta)_p(v,w) $.



                    So we have $phi^*( omega wedge eta) = phi^*(omega) wedge phi^*(eta).$






                    share|cite|improve this answer



















                    • 1




                      I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
                      – EternalBlood
                      Mar 19 '17 at 3:05












                    • Maybe using this first case, linearity and induction.
                      – Danuso Rocha
                      Mar 19 '17 at 3:18












                    • Thanks for alert me, @EternalBlood. I gave the general answer. :)
                      – Danuso Rocha
                      Mar 19 '17 at 5:16

















                    up vote
                    2
                    down vote













                    Let $p$ be a point $M$, $v,w in T_pM$ and $omega_1, omega_2, omega$ and $eta $ be 1-forms of $M$ . We have to use that:
                    $$(omega_1 wedge omega_2)_p(v,w) =
                    begin{vmatrix}
                    {omega_1}_p(v) & {omega_1}_p(w) \
                    {omega_2}_p(v) & {omega_2}_p(w)
                    end{vmatrix}$$



                    $phi^*(omega wedgeeta)_p(v,w)
                    = (omega wedge eta)_{phi (p)}(d phi_p(v),d phi_p(w)) = begin{vmatrix}
                    {(omega)}_{phi(p)}(d phi_p(v)) & {(omega)}_{phi(p)}(d phi_p(w)) \
                    {(eta)}_{phi(p)}(d phi_p(v) & {(eta)}_{phi(p)}(d phi_p(w))
                    end{vmatrix} = begin{vmatrix}
                    {(phi^*omega)}_p(v) & {(phi^*omega)}_p(w) \
                    {(phi^*eta)}_p(v) & {(phi^*eta)}_p(w)
                    end{vmatrix} = (phi^*omega) wedge (phi^*eta)_p(v,w) $.



                    So we have $phi^*( omega wedge eta) = phi^*(omega) wedge phi^*(eta).$






                    share|cite|improve this answer



















                    • 1




                      I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
                      – EternalBlood
                      Mar 19 '17 at 3:05












                    • Maybe using this first case, linearity and induction.
                      – Danuso Rocha
                      Mar 19 '17 at 3:18












                    • Thanks for alert me, @EternalBlood. I gave the general answer. :)
                      – Danuso Rocha
                      Mar 19 '17 at 5:16















                    up vote
                    2
                    down vote










                    up vote
                    2
                    down vote









                    Let $p$ be a point $M$, $v,w in T_pM$ and $omega_1, omega_2, omega$ and $eta $ be 1-forms of $M$ . We have to use that:
                    $$(omega_1 wedge omega_2)_p(v,w) =
                    begin{vmatrix}
                    {omega_1}_p(v) & {omega_1}_p(w) \
                    {omega_2}_p(v) & {omega_2}_p(w)
                    end{vmatrix}$$



                    $phi^*(omega wedgeeta)_p(v,w)
                    = (omega wedge eta)_{phi (p)}(d phi_p(v),d phi_p(w)) = begin{vmatrix}
                    {(omega)}_{phi(p)}(d phi_p(v)) & {(omega)}_{phi(p)}(d phi_p(w)) \
                    {(eta)}_{phi(p)}(d phi_p(v) & {(eta)}_{phi(p)}(d phi_p(w))
                    end{vmatrix} = begin{vmatrix}
                    {(phi^*omega)}_p(v) & {(phi^*omega)}_p(w) \
                    {(phi^*eta)}_p(v) & {(phi^*eta)}_p(w)
                    end{vmatrix} = (phi^*omega) wedge (phi^*eta)_p(v,w) $.



                    So we have $phi^*( omega wedge eta) = phi^*(omega) wedge phi^*(eta).$






                    share|cite|improve this answer














                    Let $p$ be a point $M$, $v,w in T_pM$ and $omega_1, omega_2, omega$ and $eta $ be 1-forms of $M$ . We have to use that:
                    $$(omega_1 wedge omega_2)_p(v,w) =
                    begin{vmatrix}
                    {omega_1}_p(v) & {omega_1}_p(w) \
                    {omega_2}_p(v) & {omega_2}_p(w)
                    end{vmatrix}$$



                    $phi^*(omega wedgeeta)_p(v,w)
                    = (omega wedge eta)_{phi (p)}(d phi_p(v),d phi_p(w)) = begin{vmatrix}
                    {(omega)}_{phi(p)}(d phi_p(v)) & {(omega)}_{phi(p)}(d phi_p(w)) \
                    {(eta)}_{phi(p)}(d phi_p(v) & {(eta)}_{phi(p)}(d phi_p(w))
                    end{vmatrix} = begin{vmatrix}
                    {(phi^*omega)}_p(v) & {(phi^*omega)}_p(w) \
                    {(phi^*eta)}_p(v) & {(phi^*eta)}_p(w)
                    end{vmatrix} = (phi^*omega) wedge (phi^*eta)_p(v,w) $.



                    So we have $phi^*( omega wedge eta) = phi^*(omega) wedge phi^*(eta).$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Mar 19 '17 at 3:04

























                    answered Mar 19 '17 at 2:52









                    Danuso Rocha

                    1367




                    1367








                    • 1




                      I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
                      – EternalBlood
                      Mar 19 '17 at 3:05












                    • Maybe using this first case, linearity and induction.
                      – Danuso Rocha
                      Mar 19 '17 at 3:18












                    • Thanks for alert me, @EternalBlood. I gave the general answer. :)
                      – Danuso Rocha
                      Mar 19 '17 at 5:16
















                    • 1




                      I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
                      – EternalBlood
                      Mar 19 '17 at 3:05












                    • Maybe using this first case, linearity and induction.
                      – Danuso Rocha
                      Mar 19 '17 at 3:18












                    • Thanks for alert me, @EternalBlood. I gave the general answer. :)
                      – Danuso Rocha
                      Mar 19 '17 at 5:16










                    1




                    1




                    I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
                    – EternalBlood
                    Mar 19 '17 at 3:05






                    I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
                    – EternalBlood
                    Mar 19 '17 at 3:05














                    Maybe using this first case, linearity and induction.
                    – Danuso Rocha
                    Mar 19 '17 at 3:18






                    Maybe using this first case, linearity and induction.
                    – Danuso Rocha
                    Mar 19 '17 at 3:18














                    Thanks for alert me, @EternalBlood. I gave the general answer. :)
                    – Danuso Rocha
                    Mar 19 '17 at 5:16






                    Thanks for alert me, @EternalBlood. I gave the general answer. :)
                    – Danuso Rocha
                    Mar 19 '17 at 5:16




















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2192907%2fpull-back-of-wedge-of-differential-forms%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei