Pull back of wedge of differential forms
up vote
1
down vote
favorite
Suppose that $phi : M rightarrow N$ is a smooth map between differential manifolds. Let $omega, eta$ be forms on $N$. Is there an easy proof for the fact that
$$phi^*(omega wedge eta) = phi^* omega wedge phi^* eta?$$
In other words, $phi^* : Omega(N) rightarrow Omega(M)$ is a graded algebra homomorphism. (By easy, I mean does not require expanding both sides using the definition.)
differential-geometry differential-forms
add a comment |
up vote
1
down vote
favorite
Suppose that $phi : M rightarrow N$ is a smooth map between differential manifolds. Let $omega, eta$ be forms on $N$. Is there an easy proof for the fact that
$$phi^*(omega wedge eta) = phi^* omega wedge phi^* eta?$$
In other words, $phi^* : Omega(N) rightarrow Omega(M)$ is a graded algebra homomorphism. (By easy, I mean does not require expanding both sides using the definition.)
differential-geometry differential-forms
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Suppose that $phi : M rightarrow N$ is a smooth map between differential manifolds. Let $omega, eta$ be forms on $N$. Is there an easy proof for the fact that
$$phi^*(omega wedge eta) = phi^* omega wedge phi^* eta?$$
In other words, $phi^* : Omega(N) rightarrow Omega(M)$ is a graded algebra homomorphism. (By easy, I mean does not require expanding both sides using the definition.)
differential-geometry differential-forms
Suppose that $phi : M rightarrow N$ is a smooth map between differential manifolds. Let $omega, eta$ be forms on $N$. Is there an easy proof for the fact that
$$phi^*(omega wedge eta) = phi^* omega wedge phi^* eta?$$
In other words, $phi^* : Omega(N) rightarrow Omega(M)$ is a graded algebra homomorphism. (By easy, I mean does not require expanding both sides using the definition.)
differential-geometry differential-forms
differential-geometry differential-forms
edited Mar 19 '17 at 0:48
Paul
15.9k33666
15.9k33666
asked Mar 18 '17 at 23:33
An Hoa
1,050511
1,050511
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
0
down vote
accepted
I've read your question wrong, here is a more general answer you want, I guess.
We will use this following proprieties:
$$phi^*(omega_1+omega_2)= phi^*(omega_1)+phi^*(omega_2)$$
$$omega wedge eta = frac {(m+l)!}{m!l!}Alt(omega otimes eta) $$
$$Alt(omega otimes eta)=frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma $$
By that, $$phi^*(omega wedge eta)= frac {(m+l)!}{m!l!}phi^*(Alt(omega otimes eta)) = frac {(m+l)!}{m!l!}phi^*(frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma) =\ =frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma $$
Now if we prove that $phi^*(omega otimes eta)circsigma = (phi^*omega otimes phi^*eta)circsigma $, we have that
$$frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma = frac {1}{m!l!} sum_{sigma in S_ {m+l }} (phi^*omega otimesphi^*eta)circsigma = phi^*(omega)wedge phi^*(eta)$$
Proving that $phi^*(omega otimes eta)=(phi^*omega otimes phi^*eta)$ is easy.
add a comment |
up vote
2
down vote
Let $p$ be a point $M$, $v,w in T_pM$ and $omega_1, omega_2, omega$ and $eta $ be 1-forms of $M$ . We have to use that:
$$(omega_1 wedge omega_2)_p(v,w) =
begin{vmatrix}
{omega_1}_p(v) & {omega_1}_p(w) \
{omega_2}_p(v) & {omega_2}_p(w)
end{vmatrix}$$
$phi^*(omega wedgeeta)_p(v,w)
= (omega wedge eta)_{phi (p)}(d phi_p(v),d phi_p(w)) = begin{vmatrix}
{(omega)}_{phi(p)}(d phi_p(v)) & {(omega)}_{phi(p)}(d phi_p(w)) \
{(eta)}_{phi(p)}(d phi_p(v) & {(eta)}_{phi(p)}(d phi_p(w))
end{vmatrix} = begin{vmatrix}
{(phi^*omega)}_p(v) & {(phi^*omega)}_p(w) \
{(phi^*eta)}_p(v) & {(phi^*eta)}_p(w)
end{vmatrix} = (phi^*omega) wedge (phi^*eta)_p(v,w) $.
So we have $phi^*( omega wedge eta) = phi^*(omega) wedge phi^*(eta).$
1
I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
– EternalBlood
Mar 19 '17 at 3:05
Maybe using this first case, linearity and induction.
– Danuso Rocha
Mar 19 '17 at 3:18
Thanks for alert me, @EternalBlood. I gave the general answer. :)
– Danuso Rocha
Mar 19 '17 at 5:16
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2192907%2fpull-back-of-wedge-of-differential-forms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
I've read your question wrong, here is a more general answer you want, I guess.
We will use this following proprieties:
$$phi^*(omega_1+omega_2)= phi^*(omega_1)+phi^*(omega_2)$$
$$omega wedge eta = frac {(m+l)!}{m!l!}Alt(omega otimes eta) $$
$$Alt(omega otimes eta)=frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma $$
By that, $$phi^*(omega wedge eta)= frac {(m+l)!}{m!l!}phi^*(Alt(omega otimes eta)) = frac {(m+l)!}{m!l!}phi^*(frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma) =\ =frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma $$
Now if we prove that $phi^*(omega otimes eta)circsigma = (phi^*omega otimes phi^*eta)circsigma $, we have that
$$frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma = frac {1}{m!l!} sum_{sigma in S_ {m+l }} (phi^*omega otimesphi^*eta)circsigma = phi^*(omega)wedge phi^*(eta)$$
Proving that $phi^*(omega otimes eta)=(phi^*omega otimes phi^*eta)$ is easy.
add a comment |
up vote
0
down vote
accepted
I've read your question wrong, here is a more general answer you want, I guess.
We will use this following proprieties:
$$phi^*(omega_1+omega_2)= phi^*(omega_1)+phi^*(omega_2)$$
$$omega wedge eta = frac {(m+l)!}{m!l!}Alt(omega otimes eta) $$
$$Alt(omega otimes eta)=frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma $$
By that, $$phi^*(omega wedge eta)= frac {(m+l)!}{m!l!}phi^*(Alt(omega otimes eta)) = frac {(m+l)!}{m!l!}phi^*(frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma) =\ =frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma $$
Now if we prove that $phi^*(omega otimes eta)circsigma = (phi^*omega otimes phi^*eta)circsigma $, we have that
$$frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma = frac {1}{m!l!} sum_{sigma in S_ {m+l }} (phi^*omega otimesphi^*eta)circsigma = phi^*(omega)wedge phi^*(eta)$$
Proving that $phi^*(omega otimes eta)=(phi^*omega otimes phi^*eta)$ is easy.
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
I've read your question wrong, here is a more general answer you want, I guess.
We will use this following proprieties:
$$phi^*(omega_1+omega_2)= phi^*(omega_1)+phi^*(omega_2)$$
$$omega wedge eta = frac {(m+l)!}{m!l!}Alt(omega otimes eta) $$
$$Alt(omega otimes eta)=frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma $$
By that, $$phi^*(omega wedge eta)= frac {(m+l)!}{m!l!}phi^*(Alt(omega otimes eta)) = frac {(m+l)!}{m!l!}phi^*(frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma) =\ =frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma $$
Now if we prove that $phi^*(omega otimes eta)circsigma = (phi^*omega otimes phi^*eta)circsigma $, we have that
$$frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma = frac {1}{m!l!} sum_{sigma in S_ {m+l }} (phi^*omega otimesphi^*eta)circsigma = phi^*(omega)wedge phi^*(eta)$$
Proving that $phi^*(omega otimes eta)=(phi^*omega otimes phi^*eta)$ is easy.
I've read your question wrong, here is a more general answer you want, I guess.
We will use this following proprieties:
$$phi^*(omega_1+omega_2)= phi^*(omega_1)+phi^*(omega_2)$$
$$omega wedge eta = frac {(m+l)!}{m!l!}Alt(omega otimes eta) $$
$$Alt(omega otimes eta)=frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma $$
By that, $$phi^*(omega wedge eta)= frac {(m+l)!}{m!l!}phi^*(Alt(omega otimes eta)) = frac {(m+l)!}{m!l!}phi^*(frac {1}{(m+l)!} sum_{sigma in S_ {m+l }} (omega otimes eta)circsigma) =\ =frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma $$
Now if we prove that $phi^*(omega otimes eta)circsigma = (phi^*omega otimes phi^*eta)circsigma $, we have that
$$frac {1}{m!l!} sum_{sigma in S_ {m+l }}phi^* (omega otimes eta)circsigma = frac {1}{m!l!} sum_{sigma in S_ {m+l }} (phi^*omega otimesphi^*eta)circsigma = phi^*(omega)wedge phi^*(eta)$$
Proving that $phi^*(omega otimes eta)=(phi^*omega otimes phi^*eta)$ is easy.
edited Nov 22 at 15:30
Community♦
1
1
answered Mar 19 '17 at 5:14
Danuso Rocha
1367
1367
add a comment |
add a comment |
up vote
2
down vote
Let $p$ be a point $M$, $v,w in T_pM$ and $omega_1, omega_2, omega$ and $eta $ be 1-forms of $M$ . We have to use that:
$$(omega_1 wedge omega_2)_p(v,w) =
begin{vmatrix}
{omega_1}_p(v) & {omega_1}_p(w) \
{omega_2}_p(v) & {omega_2}_p(w)
end{vmatrix}$$
$phi^*(omega wedgeeta)_p(v,w)
= (omega wedge eta)_{phi (p)}(d phi_p(v),d phi_p(w)) = begin{vmatrix}
{(omega)}_{phi(p)}(d phi_p(v)) & {(omega)}_{phi(p)}(d phi_p(w)) \
{(eta)}_{phi(p)}(d phi_p(v) & {(eta)}_{phi(p)}(d phi_p(w))
end{vmatrix} = begin{vmatrix}
{(phi^*omega)}_p(v) & {(phi^*omega)}_p(w) \
{(phi^*eta)}_p(v) & {(phi^*eta)}_p(w)
end{vmatrix} = (phi^*omega) wedge (phi^*eta)_p(v,w) $.
So we have $phi^*( omega wedge eta) = phi^*(omega) wedge phi^*(eta).$
1
I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
– EternalBlood
Mar 19 '17 at 3:05
Maybe using this first case, linearity and induction.
– Danuso Rocha
Mar 19 '17 at 3:18
Thanks for alert me, @EternalBlood. I gave the general answer. :)
– Danuso Rocha
Mar 19 '17 at 5:16
add a comment |
up vote
2
down vote
Let $p$ be a point $M$, $v,w in T_pM$ and $omega_1, omega_2, omega$ and $eta $ be 1-forms of $M$ . We have to use that:
$$(omega_1 wedge omega_2)_p(v,w) =
begin{vmatrix}
{omega_1}_p(v) & {omega_1}_p(w) \
{omega_2}_p(v) & {omega_2}_p(w)
end{vmatrix}$$
$phi^*(omega wedgeeta)_p(v,w)
= (omega wedge eta)_{phi (p)}(d phi_p(v),d phi_p(w)) = begin{vmatrix}
{(omega)}_{phi(p)}(d phi_p(v)) & {(omega)}_{phi(p)}(d phi_p(w)) \
{(eta)}_{phi(p)}(d phi_p(v) & {(eta)}_{phi(p)}(d phi_p(w))
end{vmatrix} = begin{vmatrix}
{(phi^*omega)}_p(v) & {(phi^*omega)}_p(w) \
{(phi^*eta)}_p(v) & {(phi^*eta)}_p(w)
end{vmatrix} = (phi^*omega) wedge (phi^*eta)_p(v,w) $.
So we have $phi^*( omega wedge eta) = phi^*(omega) wedge phi^*(eta).$
1
I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
– EternalBlood
Mar 19 '17 at 3:05
Maybe using this first case, linearity and induction.
– Danuso Rocha
Mar 19 '17 at 3:18
Thanks for alert me, @EternalBlood. I gave the general answer. :)
– Danuso Rocha
Mar 19 '17 at 5:16
add a comment |
up vote
2
down vote
up vote
2
down vote
Let $p$ be a point $M$, $v,w in T_pM$ and $omega_1, omega_2, omega$ and $eta $ be 1-forms of $M$ . We have to use that:
$$(omega_1 wedge omega_2)_p(v,w) =
begin{vmatrix}
{omega_1}_p(v) & {omega_1}_p(w) \
{omega_2}_p(v) & {omega_2}_p(w)
end{vmatrix}$$
$phi^*(omega wedgeeta)_p(v,w)
= (omega wedge eta)_{phi (p)}(d phi_p(v),d phi_p(w)) = begin{vmatrix}
{(omega)}_{phi(p)}(d phi_p(v)) & {(omega)}_{phi(p)}(d phi_p(w)) \
{(eta)}_{phi(p)}(d phi_p(v) & {(eta)}_{phi(p)}(d phi_p(w))
end{vmatrix} = begin{vmatrix}
{(phi^*omega)}_p(v) & {(phi^*omega)}_p(w) \
{(phi^*eta)}_p(v) & {(phi^*eta)}_p(w)
end{vmatrix} = (phi^*omega) wedge (phi^*eta)_p(v,w) $.
So we have $phi^*( omega wedge eta) = phi^*(omega) wedge phi^*(eta).$
Let $p$ be a point $M$, $v,w in T_pM$ and $omega_1, omega_2, omega$ and $eta $ be 1-forms of $M$ . We have to use that:
$$(omega_1 wedge omega_2)_p(v,w) =
begin{vmatrix}
{omega_1}_p(v) & {omega_1}_p(w) \
{omega_2}_p(v) & {omega_2}_p(w)
end{vmatrix}$$
$phi^*(omega wedgeeta)_p(v,w)
= (omega wedge eta)_{phi (p)}(d phi_p(v),d phi_p(w)) = begin{vmatrix}
{(omega)}_{phi(p)}(d phi_p(v)) & {(omega)}_{phi(p)}(d phi_p(w)) \
{(eta)}_{phi(p)}(d phi_p(v) & {(eta)}_{phi(p)}(d phi_p(w))
end{vmatrix} = begin{vmatrix}
{(phi^*omega)}_p(v) & {(phi^*omega)}_p(w) \
{(phi^*eta)}_p(v) & {(phi^*eta)}_p(w)
end{vmatrix} = (phi^*omega) wedge (phi^*eta)_p(v,w) $.
So we have $phi^*( omega wedge eta) = phi^*(omega) wedge phi^*(eta).$
edited Mar 19 '17 at 3:04
answered Mar 19 '17 at 2:52
Danuso Rocha
1367
1367
1
I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
– EternalBlood
Mar 19 '17 at 3:05
Maybe using this first case, linearity and induction.
– Danuso Rocha
Mar 19 '17 at 3:18
Thanks for alert me, @EternalBlood. I gave the general answer. :)
– Danuso Rocha
Mar 19 '17 at 5:16
add a comment |
1
I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
– EternalBlood
Mar 19 '17 at 3:05
Maybe using this first case, linearity and induction.
– Danuso Rocha
Mar 19 '17 at 3:18
Thanks for alert me, @EternalBlood. I gave the general answer. :)
– Danuso Rocha
Mar 19 '17 at 5:16
1
1
I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
– EternalBlood
Mar 19 '17 at 3:05
I see what you are trying to do, I like you aprroach. But what if $omega=sum f_{i_1,ldots, i_k} dx_{i_1}wedgecdotswedge dx_{i_k}in Gamma^infty Big(Lambda^kbig( T^* M big)Big) $ and $eta=sum g_{j_1,ldots, j_ell} dx_{j_1}wedgecdotswedge dx_{j_ell}in Gamma^infty Big(Lambda^ellbig( T^* M big)Big)$ are arbitrary forms ( of degree $k$ and $ell$ respectively) ?
– EternalBlood
Mar 19 '17 at 3:05
Maybe using this first case, linearity and induction.
– Danuso Rocha
Mar 19 '17 at 3:18
Maybe using this first case, linearity and induction.
– Danuso Rocha
Mar 19 '17 at 3:18
Thanks for alert me, @EternalBlood. I gave the general answer. :)
– Danuso Rocha
Mar 19 '17 at 5:16
Thanks for alert me, @EternalBlood. I gave the general answer. :)
– Danuso Rocha
Mar 19 '17 at 5:16
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2192907%2fpull-back-of-wedge-of-differential-forms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown