What is actually happening in the Hackenbush advantage measurement?
up vote
3
down vote
favorite
I'm reading Berlekamp/Conway/Guy's Winning Ways for Your Mathematical Plays. Here:
I am a little bit confused: What is happening here? It seems to me that we know that a game with a unique red edge is a $1-$move advantage for red. But we still can't know what is the advantage value for $(a)$, so we call the advantage of red and blue $r,b$. Then for $(a)$, we have $r,b$ advantages.
For $(b)$, we have $r+1,b-1$ advantages. Now $(c)$ is a zero position, it seems this allow us to write the following advantage equations: $2r+1=0, 2b-1=0$ and from this we can know the advantage value of a certain game for each player.
Is my interpretation correct? I am asking what is the "moral of the story", it seems that whenever we don't know the value of a game, we can try to "compose it" with some other games (such as the game with a single red or blue edge which we know it's value) until it forms a zero position, from which we can write a system of equations, solve and find the advantage value of each player in our unknown game.
combinatorial-game-theory
add a comment |
up vote
3
down vote
favorite
I'm reading Berlekamp/Conway/Guy's Winning Ways for Your Mathematical Plays. Here:
I am a little bit confused: What is happening here? It seems to me that we know that a game with a unique red edge is a $1-$move advantage for red. But we still can't know what is the advantage value for $(a)$, so we call the advantage of red and blue $r,b$. Then for $(a)$, we have $r,b$ advantages.
For $(b)$, we have $r+1,b-1$ advantages. Now $(c)$ is a zero position, it seems this allow us to write the following advantage equations: $2r+1=0, 2b-1=0$ and from this we can know the advantage value of a certain game for each player.
Is my interpretation correct? I am asking what is the "moral of the story", it seems that whenever we don't know the value of a game, we can try to "compose it" with some other games (such as the game with a single red or blue edge which we know it's value) until it forms a zero position, from which we can write a system of equations, solve and find the advantage value of each player in our unknown game.
combinatorial-game-theory
1
The answers are good, but I think part of the problem might be that the passage (and most of the book) you're reading is presented in a style as if the authors and readers are trying to discover the theory together (it's just that the authors already have many relevant case studies at hand), as opposed to a regular textbook where the theory is known and the author tries to explain it. For more traditional texts on the subject, see "Lessons in Play" by Albert, Nowakowski, and Wolfe or "An Introduction to Combinatorial Game Theory" by L. R. Haff & W. J. Garner.
– Mark S.
54 mins ago
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I'm reading Berlekamp/Conway/Guy's Winning Ways for Your Mathematical Plays. Here:
I am a little bit confused: What is happening here? It seems to me that we know that a game with a unique red edge is a $1-$move advantage for red. But we still can't know what is the advantage value for $(a)$, so we call the advantage of red and blue $r,b$. Then for $(a)$, we have $r,b$ advantages.
For $(b)$, we have $r+1,b-1$ advantages. Now $(c)$ is a zero position, it seems this allow us to write the following advantage equations: $2r+1=0, 2b-1=0$ and from this we can know the advantage value of a certain game for each player.
Is my interpretation correct? I am asking what is the "moral of the story", it seems that whenever we don't know the value of a game, we can try to "compose it" with some other games (such as the game with a single red or blue edge which we know it's value) until it forms a zero position, from which we can write a system of equations, solve and find the advantage value of each player in our unknown game.
combinatorial-game-theory
I'm reading Berlekamp/Conway/Guy's Winning Ways for Your Mathematical Plays. Here:
I am a little bit confused: What is happening here? It seems to me that we know that a game with a unique red edge is a $1-$move advantage for red. But we still can't know what is the advantage value for $(a)$, so we call the advantage of red and blue $r,b$. Then for $(a)$, we have $r,b$ advantages.
For $(b)$, we have $r+1,b-1$ advantages. Now $(c)$ is a zero position, it seems this allow us to write the following advantage equations: $2r+1=0, 2b-1=0$ and from this we can know the advantage value of a certain game for each player.
Is my interpretation correct? I am asking what is the "moral of the story", it seems that whenever we don't know the value of a game, we can try to "compose it" with some other games (such as the game with a single red or blue edge which we know it's value) until it forms a zero position, from which we can write a system of equations, solve and find the advantage value of each player in our unknown game.
combinatorial-game-theory
combinatorial-game-theory
asked 4 hours ago
Billy Rubina
10.3k1458134
10.3k1458134
1
The answers are good, but I think part of the problem might be that the passage (and most of the book) you're reading is presented in a style as if the authors and readers are trying to discover the theory together (it's just that the authors already have many relevant case studies at hand), as opposed to a regular textbook where the theory is known and the author tries to explain it. For more traditional texts on the subject, see "Lessons in Play" by Albert, Nowakowski, and Wolfe or "An Introduction to Combinatorial Game Theory" by L. R. Haff & W. J. Garner.
– Mark S.
54 mins ago
add a comment |
1
The answers are good, but I think part of the problem might be that the passage (and most of the book) you're reading is presented in a style as if the authors and readers are trying to discover the theory together (it's just that the authors already have many relevant case studies at hand), as opposed to a regular textbook where the theory is known and the author tries to explain it. For more traditional texts on the subject, see "Lessons in Play" by Albert, Nowakowski, and Wolfe or "An Introduction to Combinatorial Game Theory" by L. R. Haff & W. J. Garner.
– Mark S.
54 mins ago
1
1
The answers are good, but I think part of the problem might be that the passage (and most of the book) you're reading is presented in a style as if the authors and readers are trying to discover the theory together (it's just that the authors already have many relevant case studies at hand), as opposed to a regular textbook where the theory is known and the author tries to explain it. For more traditional texts on the subject, see "Lessons in Play" by Albert, Nowakowski, and Wolfe or "An Introduction to Combinatorial Game Theory" by L. R. Haff & W. J. Garner.
– Mark S.
54 mins ago
The answers are good, but I think part of the problem might be that the passage (and most of the book) you're reading is presented in a style as if the authors and readers are trying to discover the theory together (it's just that the authors already have many relevant case studies at hand), as opposed to a regular textbook where the theory is known and the author tries to explain it. For more traditional texts on the subject, see "Lessons in Play" by Albert, Nowakowski, and Wolfe or "An Introduction to Combinatorial Game Theory" by L. R. Haff & W. J. Garner.
– Mark S.
54 mins ago
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
A Hackenbush game has a value that is a number, so you just need one number for the value of the position, not $r,b$ separately. Yes, one way to value a position is to compose it with known positions and find a combination that has $0$ value, then use algebra to determine the value of the unknown position. If we let the value of position $a$ be $v$, the value of position $c$ is $2v-1$. Once we prove that is $0$ we can find $v=frac 12$ by algebra.
Another way is to look at the options in a position. The red above blue position is ${0|1}$ because blue can move to $0$ and red can move to $1$. There is a theorem coming that the value of ${a|b}$ is the simplest number that fits between $a$ and $b$. For ${0|1}$ that is $frac 12$
add a comment |
up vote
3
down vote
Your idea is correct. From a broader perspective, the set of (red-blue) Hackenbush positions (up to equivalence) form a totally ordered abelian group (called the surreal numbers): they have operations of addition and subtraction and a relation $leq$ which satisfy all the usual properties. Now, it's a theorem that any totally ordered abelian group $G$ satisfying a certain extra "finiteness" condition (the Archimedean axiom) is isomorphic to a subgroup of the real numbers. Namely, if you fix some element of $G$ to call "$1$", for every other element $gin G$ you can consider the set of rational numbers $frac{m}{n}$ such that $mcdot gleq ncdot 1$. This set forms a Dedekind cut in the rational numbers and so determines a real number. It can then be shown that mapping $g$ to this real number is an isomorphism of ordered abelian groups from $G$ to a subgroup of $mathbb{R}$.
Now, in the case of Hackenbush, the set of finite Hackenbush positions (up to equivalence) satisfies the Archimedean axiom, and so this theorem applies. That means that when we identify some element to be $1$, there is a canonical way to identify such positions as real numbers. We choose to let "$1$" be a position with $1$-move advantage for Left, so that we can loosely think of the number associate to a position as "the number of moves that Left is ahead by". It turns out then that the subgroup of the real numbers corresponding to finite Hackenbush positions is the group of dyadic rationals.
Yes. But the construction of these numbers is recursive, right? In the book, it seems that given $1$, I can construct $1/2$ and I need it to construct $3/2$.
– Billy Rubina
42 mins ago
I'm not sure what you mean by that. There is recursion involved but I'm not sure what you're talking about exactly or what you see as a problem.
– Eric Wofsey
39 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042817%2fwhat-is-actually-happening-in-the-hackenbush-advantage-measurement%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
A Hackenbush game has a value that is a number, so you just need one number for the value of the position, not $r,b$ separately. Yes, one way to value a position is to compose it with known positions and find a combination that has $0$ value, then use algebra to determine the value of the unknown position. If we let the value of position $a$ be $v$, the value of position $c$ is $2v-1$. Once we prove that is $0$ we can find $v=frac 12$ by algebra.
Another way is to look at the options in a position. The red above blue position is ${0|1}$ because blue can move to $0$ and red can move to $1$. There is a theorem coming that the value of ${a|b}$ is the simplest number that fits between $a$ and $b$. For ${0|1}$ that is $frac 12$
add a comment |
up vote
3
down vote
A Hackenbush game has a value that is a number, so you just need one number for the value of the position, not $r,b$ separately. Yes, one way to value a position is to compose it with known positions and find a combination that has $0$ value, then use algebra to determine the value of the unknown position. If we let the value of position $a$ be $v$, the value of position $c$ is $2v-1$. Once we prove that is $0$ we can find $v=frac 12$ by algebra.
Another way is to look at the options in a position. The red above blue position is ${0|1}$ because blue can move to $0$ and red can move to $1$. There is a theorem coming that the value of ${a|b}$ is the simplest number that fits between $a$ and $b$. For ${0|1}$ that is $frac 12$
add a comment |
up vote
3
down vote
up vote
3
down vote
A Hackenbush game has a value that is a number, so you just need one number for the value of the position, not $r,b$ separately. Yes, one way to value a position is to compose it with known positions and find a combination that has $0$ value, then use algebra to determine the value of the unknown position. If we let the value of position $a$ be $v$, the value of position $c$ is $2v-1$. Once we prove that is $0$ we can find $v=frac 12$ by algebra.
Another way is to look at the options in a position. The red above blue position is ${0|1}$ because blue can move to $0$ and red can move to $1$. There is a theorem coming that the value of ${a|b}$ is the simplest number that fits between $a$ and $b$. For ${0|1}$ that is $frac 12$
A Hackenbush game has a value that is a number, so you just need one number for the value of the position, not $r,b$ separately. Yes, one way to value a position is to compose it with known positions and find a combination that has $0$ value, then use algebra to determine the value of the unknown position. If we let the value of position $a$ be $v$, the value of position $c$ is $2v-1$. Once we prove that is $0$ we can find $v=frac 12$ by algebra.
Another way is to look at the options in a position. The red above blue position is ${0|1}$ because blue can move to $0$ and red can move to $1$. There is a theorem coming that the value of ${a|b}$ is the simplest number that fits between $a$ and $b$. For ${0|1}$ that is $frac 12$
answered 4 hours ago
Ross Millikan
290k23195368
290k23195368
add a comment |
add a comment |
up vote
3
down vote
Your idea is correct. From a broader perspective, the set of (red-blue) Hackenbush positions (up to equivalence) form a totally ordered abelian group (called the surreal numbers): they have operations of addition and subtraction and a relation $leq$ which satisfy all the usual properties. Now, it's a theorem that any totally ordered abelian group $G$ satisfying a certain extra "finiteness" condition (the Archimedean axiom) is isomorphic to a subgroup of the real numbers. Namely, if you fix some element of $G$ to call "$1$", for every other element $gin G$ you can consider the set of rational numbers $frac{m}{n}$ such that $mcdot gleq ncdot 1$. This set forms a Dedekind cut in the rational numbers and so determines a real number. It can then be shown that mapping $g$ to this real number is an isomorphism of ordered abelian groups from $G$ to a subgroup of $mathbb{R}$.
Now, in the case of Hackenbush, the set of finite Hackenbush positions (up to equivalence) satisfies the Archimedean axiom, and so this theorem applies. That means that when we identify some element to be $1$, there is a canonical way to identify such positions as real numbers. We choose to let "$1$" be a position with $1$-move advantage for Left, so that we can loosely think of the number associate to a position as "the number of moves that Left is ahead by". It turns out then that the subgroup of the real numbers corresponding to finite Hackenbush positions is the group of dyadic rationals.
Yes. But the construction of these numbers is recursive, right? In the book, it seems that given $1$, I can construct $1/2$ and I need it to construct $3/2$.
– Billy Rubina
42 mins ago
I'm not sure what you mean by that. There is recursion involved but I'm not sure what you're talking about exactly or what you see as a problem.
– Eric Wofsey
39 mins ago
add a comment |
up vote
3
down vote
Your idea is correct. From a broader perspective, the set of (red-blue) Hackenbush positions (up to equivalence) form a totally ordered abelian group (called the surreal numbers): they have operations of addition and subtraction and a relation $leq$ which satisfy all the usual properties. Now, it's a theorem that any totally ordered abelian group $G$ satisfying a certain extra "finiteness" condition (the Archimedean axiom) is isomorphic to a subgroup of the real numbers. Namely, if you fix some element of $G$ to call "$1$", for every other element $gin G$ you can consider the set of rational numbers $frac{m}{n}$ such that $mcdot gleq ncdot 1$. This set forms a Dedekind cut in the rational numbers and so determines a real number. It can then be shown that mapping $g$ to this real number is an isomorphism of ordered abelian groups from $G$ to a subgroup of $mathbb{R}$.
Now, in the case of Hackenbush, the set of finite Hackenbush positions (up to equivalence) satisfies the Archimedean axiom, and so this theorem applies. That means that when we identify some element to be $1$, there is a canonical way to identify such positions as real numbers. We choose to let "$1$" be a position with $1$-move advantage for Left, so that we can loosely think of the number associate to a position as "the number of moves that Left is ahead by". It turns out then that the subgroup of the real numbers corresponding to finite Hackenbush positions is the group of dyadic rationals.
Yes. But the construction of these numbers is recursive, right? In the book, it seems that given $1$, I can construct $1/2$ and I need it to construct $3/2$.
– Billy Rubina
42 mins ago
I'm not sure what you mean by that. There is recursion involved but I'm not sure what you're talking about exactly or what you see as a problem.
– Eric Wofsey
39 mins ago
add a comment |
up vote
3
down vote
up vote
3
down vote
Your idea is correct. From a broader perspective, the set of (red-blue) Hackenbush positions (up to equivalence) form a totally ordered abelian group (called the surreal numbers): they have operations of addition and subtraction and a relation $leq$ which satisfy all the usual properties. Now, it's a theorem that any totally ordered abelian group $G$ satisfying a certain extra "finiteness" condition (the Archimedean axiom) is isomorphic to a subgroup of the real numbers. Namely, if you fix some element of $G$ to call "$1$", for every other element $gin G$ you can consider the set of rational numbers $frac{m}{n}$ such that $mcdot gleq ncdot 1$. This set forms a Dedekind cut in the rational numbers and so determines a real number. It can then be shown that mapping $g$ to this real number is an isomorphism of ordered abelian groups from $G$ to a subgroup of $mathbb{R}$.
Now, in the case of Hackenbush, the set of finite Hackenbush positions (up to equivalence) satisfies the Archimedean axiom, and so this theorem applies. That means that when we identify some element to be $1$, there is a canonical way to identify such positions as real numbers. We choose to let "$1$" be a position with $1$-move advantage for Left, so that we can loosely think of the number associate to a position as "the number of moves that Left is ahead by". It turns out then that the subgroup of the real numbers corresponding to finite Hackenbush positions is the group of dyadic rationals.
Your idea is correct. From a broader perspective, the set of (red-blue) Hackenbush positions (up to equivalence) form a totally ordered abelian group (called the surreal numbers): they have operations of addition and subtraction and a relation $leq$ which satisfy all the usual properties. Now, it's a theorem that any totally ordered abelian group $G$ satisfying a certain extra "finiteness" condition (the Archimedean axiom) is isomorphic to a subgroup of the real numbers. Namely, if you fix some element of $G$ to call "$1$", for every other element $gin G$ you can consider the set of rational numbers $frac{m}{n}$ such that $mcdot gleq ncdot 1$. This set forms a Dedekind cut in the rational numbers and so determines a real number. It can then be shown that mapping $g$ to this real number is an isomorphism of ordered abelian groups from $G$ to a subgroup of $mathbb{R}$.
Now, in the case of Hackenbush, the set of finite Hackenbush positions (up to equivalence) satisfies the Archimedean axiom, and so this theorem applies. That means that when we identify some element to be $1$, there is a canonical way to identify such positions as real numbers. We choose to let "$1$" be a position with $1$-move advantage for Left, so that we can loosely think of the number associate to a position as "the number of moves that Left is ahead by". It turns out then that the subgroup of the real numbers corresponding to finite Hackenbush positions is the group of dyadic rationals.
answered 3 hours ago
Eric Wofsey
177k12202328
177k12202328
Yes. But the construction of these numbers is recursive, right? In the book, it seems that given $1$, I can construct $1/2$ and I need it to construct $3/2$.
– Billy Rubina
42 mins ago
I'm not sure what you mean by that. There is recursion involved but I'm not sure what you're talking about exactly or what you see as a problem.
– Eric Wofsey
39 mins ago
add a comment |
Yes. But the construction of these numbers is recursive, right? In the book, it seems that given $1$, I can construct $1/2$ and I need it to construct $3/2$.
– Billy Rubina
42 mins ago
I'm not sure what you mean by that. There is recursion involved but I'm not sure what you're talking about exactly or what you see as a problem.
– Eric Wofsey
39 mins ago
Yes. But the construction of these numbers is recursive, right? In the book, it seems that given $1$, I can construct $1/2$ and I need it to construct $3/2$.
– Billy Rubina
42 mins ago
Yes. But the construction of these numbers is recursive, right? In the book, it seems that given $1$, I can construct $1/2$ and I need it to construct $3/2$.
– Billy Rubina
42 mins ago
I'm not sure what you mean by that. There is recursion involved but I'm not sure what you're talking about exactly or what you see as a problem.
– Eric Wofsey
39 mins ago
I'm not sure what you mean by that. There is recursion involved but I'm not sure what you're talking about exactly or what you see as a problem.
– Eric Wofsey
39 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042817%2fwhat-is-actually-happening-in-the-hackenbush-advantage-measurement%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
The answers are good, but I think part of the problem might be that the passage (and most of the book) you're reading is presented in a style as if the authors and readers are trying to discover the theory together (it's just that the authors already have many relevant case studies at hand), as opposed to a regular textbook where the theory is known and the author tries to explain it. For more traditional texts on the subject, see "Lessons in Play" by Albert, Nowakowski, and Wolfe or "An Introduction to Combinatorial Game Theory" by L. R. Haff & W. J. Garner.
– Mark S.
54 mins ago