Work of a force field
up vote
2
down vote
favorite
I have a parameter curve in 3d:
r1[t_] := {Cos[2 Pi t], Sin[2 Pi t], t}
r2[t_] := {1, 0, t}
r3[t_] := {1 - 1/2 Sin[Pi t], 0, 1/2 - Cos[Pi t]}
with a vector field:
F[x_, y_, z_] := {-2 x y + z^3, -1 - x^2, 3 x z^2};
r = {x, y, z}
Now I want to calculate work of force field as the path integral for r1
, r2
and r3
as a procedure, that uses arguments F(r)
and r(t)
and times t0
& t1
.
Has someone an idea how to realize it into Mathematica code?
Thanks a lot!
looks great!
I also want to visualize the curves in a ParametricPlot3D, I did this:
r1[t] = ParametricPlot3D[{{Cos[2*Pi*t], Sin[2*Pi*t], t}}, {t, 0, 1}]
r2[t] = ParametricPlot3D[{{1, 0, t}}, {t, 0, 1}]
r3[t] = ParametricPlot3D[{{1 - 1/2*Sin[Pi*t], 0,
1/2*(1 - Cos[Pi*t])}}, {t, 0, 1}]
How can I define the path of the curves from (1,0,0) to (1,0,1)
?
function-construction programming
add a comment |
up vote
2
down vote
favorite
I have a parameter curve in 3d:
r1[t_] := {Cos[2 Pi t], Sin[2 Pi t], t}
r2[t_] := {1, 0, t}
r3[t_] := {1 - 1/2 Sin[Pi t], 0, 1/2 - Cos[Pi t]}
with a vector field:
F[x_, y_, z_] := {-2 x y + z^3, -1 - x^2, 3 x z^2};
r = {x, y, z}
Now I want to calculate work of force field as the path integral for r1
, r2
and r3
as a procedure, that uses arguments F(r)
and r(t)
and times t0
& t1
.
Has someone an idea how to realize it into Mathematica code?
Thanks a lot!
looks great!
I also want to visualize the curves in a ParametricPlot3D, I did this:
r1[t] = ParametricPlot3D[{{Cos[2*Pi*t], Sin[2*Pi*t], t}}, {t, 0, 1}]
r2[t] = ParametricPlot3D[{{1, 0, t}}, {t, 0, 1}]
r3[t] = ParametricPlot3D[{{1 - 1/2*Sin[Pi*t], 0,
1/2*(1 - Cos[Pi*t])}}, {t, 0, 1}]
How can I define the path of the curves from (1,0,0) to (1,0,1)
?
function-construction programming
1
It should beCos[2*Pi*t]
orCos[2 Pi t]
, notcos(2*Pi*t)
.
– Henrik Schumacher
7 hours ago
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I have a parameter curve in 3d:
r1[t_] := {Cos[2 Pi t], Sin[2 Pi t], t}
r2[t_] := {1, 0, t}
r3[t_] := {1 - 1/2 Sin[Pi t], 0, 1/2 - Cos[Pi t]}
with a vector field:
F[x_, y_, z_] := {-2 x y + z^3, -1 - x^2, 3 x z^2};
r = {x, y, z}
Now I want to calculate work of force field as the path integral for r1
, r2
and r3
as a procedure, that uses arguments F(r)
and r(t)
and times t0
& t1
.
Has someone an idea how to realize it into Mathematica code?
Thanks a lot!
looks great!
I also want to visualize the curves in a ParametricPlot3D, I did this:
r1[t] = ParametricPlot3D[{{Cos[2*Pi*t], Sin[2*Pi*t], t}}, {t, 0, 1}]
r2[t] = ParametricPlot3D[{{1, 0, t}}, {t, 0, 1}]
r3[t] = ParametricPlot3D[{{1 - 1/2*Sin[Pi*t], 0,
1/2*(1 - Cos[Pi*t])}}, {t, 0, 1}]
How can I define the path of the curves from (1,0,0) to (1,0,1)
?
function-construction programming
I have a parameter curve in 3d:
r1[t_] := {Cos[2 Pi t], Sin[2 Pi t], t}
r2[t_] := {1, 0, t}
r3[t_] := {1 - 1/2 Sin[Pi t], 0, 1/2 - Cos[Pi t]}
with a vector field:
F[x_, y_, z_] := {-2 x y + z^3, -1 - x^2, 3 x z^2};
r = {x, y, z}
Now I want to calculate work of force field as the path integral for r1
, r2
and r3
as a procedure, that uses arguments F(r)
and r(t)
and times t0
& t1
.
Has someone an idea how to realize it into Mathematica code?
Thanks a lot!
looks great!
I also want to visualize the curves in a ParametricPlot3D, I did this:
r1[t] = ParametricPlot3D[{{Cos[2*Pi*t], Sin[2*Pi*t], t}}, {t, 0, 1}]
r2[t] = ParametricPlot3D[{{1, 0, t}}, {t, 0, 1}]
r3[t] = ParametricPlot3D[{{1 - 1/2*Sin[Pi*t], 0,
1/2*(1 - Cos[Pi*t])}}, {t, 0, 1}]
How can I define the path of the curves from (1,0,0) to (1,0,1)
?
function-construction programming
function-construction programming
edited 2 hours ago
Mr.Wizard♦
230k294741034
230k294741034
asked 8 hours ago
Tom
362
362
1
It should beCos[2*Pi*t]
orCos[2 Pi t]
, notcos(2*Pi*t)
.
– Henrik Schumacher
7 hours ago
add a comment |
1
It should beCos[2*Pi*t]
orCos[2 Pi t]
, notcos(2*Pi*t)
.
– Henrik Schumacher
7 hours ago
1
1
It should be
Cos[2*Pi*t]
or Cos[2 Pi t]
, not cos(2*Pi*t)
.– Henrik Schumacher
7 hours ago
It should be
Cos[2*Pi*t]
or Cos[2 Pi t]
, not cos(2*Pi*t)
.– Henrik Schumacher
7 hours ago
add a comment |
3 Answers
3
active
oldest
votes
up vote
7
down vote
It is more about physics, rather than Mathematica. You should express the work as follows: $ intvec{F}cdotvec{r}_1'(t), mathrm dt $ After that it is easy to write the Mathematica expression:
Integrate[
F[r1[t][[1]], r1[t][[2]], r1[t][[3]]].D[r1[t], t], {t, t0, t1}]
(* 1/4 (-4 t0^3 Cos[2 [Pi] t0] + 4 t1^3 Cos[2 [Pi] t1] +
5 Sin[2 [Pi] t0] + Sin[6 [Pi] t0] - 5 Sin[2 [Pi] t1] -
Sin[6 [Pi] t1]) *)
The rest you can do analogously.
Have fun!
add a comment |
up vote
3
down vote
I guess codes below would work:
(F @@ #).D[#, t] & /@ {r1[t], r2[t], r3[t]} // Simplify
Integrate[%, {t, t0, t1}]
add a comment |
up vote
0
down vote
Here are two ways, one involving DSolve
and differential one-forms (the first one is like the others, except for being packaged up in a line integral function). See this answer by LLlAMnYP for the DSolve
approach.
(*Remove[Global`W,Global`oneFormQ];*) (* commented out package-like stuff *)
ClearAll[lineInt];
(*Begin["lineInt`"];*)
(* integrate a vector field *)
lineInt[F_?VectorQ, c : (X_?VectorQ -> rt_?VectorQ), {t_, a_, b_},
opts : OptionsPattern[Integrate]] :=
Integrate[(F /. Thread[c]).D[rt, t], {t, a, b}, opts];
(* integrate a one form *)
oneFormQ[ω_, X_] :=
Internal`LinearQ[ω, Dt[X]] &&
PossibleZeroQ[ω /. Thread[Dt[X] -> 0]];
lineInt[ω_, c : (X_?VectorQ -> rt_?VectorQ), {t_, a_, b_},
opts : OptionsPattern[DSolve]] := Block[{W},
DSolveValue[
{{Dt[W[t]] == ω, Dt[X] == Dt[rt]} /.
Thread[X -> Through[X[t]]],
W[a] == 0, Through[X[a]] == rt /. t -> a},
W[b],
t, opts] /; oneFormQ[ω, X]
];
(*End;*)
X = {x, y, z};
lineInt[(F @@ X).Dt[X], X -> r1[t], {t, t0, t1}] // RepeatedTiming
(*
{0.196, 1/4 (-4 t0^3 Cos[2 π t0] + 4 t1^3 Cos[2 π t1] +
5 Sin[2 π t0] + Sin[6 π t0] - 5 Sin[2 π t1] -
Sin[6 π t1])}
*)
lineInt[F @@ X, X -> r1[t], {t, t0, t1}] // RepeatedTiming
(*
{2.19, 1/4 (-4 t0^3 Cos[2 π t0] + 4 t1^3 Cos[2 π t1] +
5 Sin[2 π t0] + Sin[6 π t0] - 5 Sin[2 π t1] -
Sin[6 π t1])}
*)
Integrate
must do a lot of checking that DSolve
skips, I guess.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f187983%2fwork-of-a-force-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
7
down vote
It is more about physics, rather than Mathematica. You should express the work as follows: $ intvec{F}cdotvec{r}_1'(t), mathrm dt $ After that it is easy to write the Mathematica expression:
Integrate[
F[r1[t][[1]], r1[t][[2]], r1[t][[3]]].D[r1[t], t], {t, t0, t1}]
(* 1/4 (-4 t0^3 Cos[2 [Pi] t0] + 4 t1^3 Cos[2 [Pi] t1] +
5 Sin[2 [Pi] t0] + Sin[6 [Pi] t0] - 5 Sin[2 [Pi] t1] -
Sin[6 [Pi] t1]) *)
The rest you can do analogously.
Have fun!
add a comment |
up vote
7
down vote
It is more about physics, rather than Mathematica. You should express the work as follows: $ intvec{F}cdotvec{r}_1'(t), mathrm dt $ After that it is easy to write the Mathematica expression:
Integrate[
F[r1[t][[1]], r1[t][[2]], r1[t][[3]]].D[r1[t], t], {t, t0, t1}]
(* 1/4 (-4 t0^3 Cos[2 [Pi] t0] + 4 t1^3 Cos[2 [Pi] t1] +
5 Sin[2 [Pi] t0] + Sin[6 [Pi] t0] - 5 Sin[2 [Pi] t1] -
Sin[6 [Pi] t1]) *)
The rest you can do analogously.
Have fun!
add a comment |
up vote
7
down vote
up vote
7
down vote
It is more about physics, rather than Mathematica. You should express the work as follows: $ intvec{F}cdotvec{r}_1'(t), mathrm dt $ After that it is easy to write the Mathematica expression:
Integrate[
F[r1[t][[1]], r1[t][[2]], r1[t][[3]]].D[r1[t], t], {t, t0, t1}]
(* 1/4 (-4 t0^3 Cos[2 [Pi] t0] + 4 t1^3 Cos[2 [Pi] t1] +
5 Sin[2 [Pi] t0] + Sin[6 [Pi] t0] - 5 Sin[2 [Pi] t1] -
Sin[6 [Pi] t1]) *)
The rest you can do analogously.
Have fun!
It is more about physics, rather than Mathematica. You should express the work as follows: $ intvec{F}cdotvec{r}_1'(t), mathrm dt $ After that it is easy to write the Mathematica expression:
Integrate[
F[r1[t][[1]], r1[t][[2]], r1[t][[3]]].D[r1[t], t], {t, t0, t1}]
(* 1/4 (-4 t0^3 Cos[2 [Pi] t0] + 4 t1^3 Cos[2 [Pi] t1] +
5 Sin[2 [Pi] t0] + Sin[6 [Pi] t0] - 5 Sin[2 [Pi] t1] -
Sin[6 [Pi] t1]) *)
The rest you can do analogously.
Have fun!
edited 7 hours ago
Αλέξανδρος Ζεγγ
3,8971928
3,8971928
answered 7 hours ago
Alexei Boulbitch
21.3k2369
21.3k2369
add a comment |
add a comment |
up vote
3
down vote
I guess codes below would work:
(F @@ #).D[#, t] & /@ {r1[t], r2[t], r3[t]} // Simplify
Integrate[%, {t, t0, t1}]
add a comment |
up vote
3
down vote
I guess codes below would work:
(F @@ #).D[#, t] & /@ {r1[t], r2[t], r3[t]} // Simplify
Integrate[%, {t, t0, t1}]
add a comment |
up vote
3
down vote
up vote
3
down vote
I guess codes below would work:
(F @@ #).D[#, t] & /@ {r1[t], r2[t], r3[t]} // Simplify
Integrate[%, {t, t0, t1}]
I guess codes below would work:
(F @@ #).D[#, t] & /@ {r1[t], r2[t], r3[t]} // Simplify
Integrate[%, {t, t0, t1}]
edited 7 hours ago
answered 7 hours ago
Αλέξανδρος Ζεγγ
3,8971928
3,8971928
add a comment |
add a comment |
up vote
0
down vote
Here are two ways, one involving DSolve
and differential one-forms (the first one is like the others, except for being packaged up in a line integral function). See this answer by LLlAMnYP for the DSolve
approach.
(*Remove[Global`W,Global`oneFormQ];*) (* commented out package-like stuff *)
ClearAll[lineInt];
(*Begin["lineInt`"];*)
(* integrate a vector field *)
lineInt[F_?VectorQ, c : (X_?VectorQ -> rt_?VectorQ), {t_, a_, b_},
opts : OptionsPattern[Integrate]] :=
Integrate[(F /. Thread[c]).D[rt, t], {t, a, b}, opts];
(* integrate a one form *)
oneFormQ[ω_, X_] :=
Internal`LinearQ[ω, Dt[X]] &&
PossibleZeroQ[ω /. Thread[Dt[X] -> 0]];
lineInt[ω_, c : (X_?VectorQ -> rt_?VectorQ), {t_, a_, b_},
opts : OptionsPattern[DSolve]] := Block[{W},
DSolveValue[
{{Dt[W[t]] == ω, Dt[X] == Dt[rt]} /.
Thread[X -> Through[X[t]]],
W[a] == 0, Through[X[a]] == rt /. t -> a},
W[b],
t, opts] /; oneFormQ[ω, X]
];
(*End;*)
X = {x, y, z};
lineInt[(F @@ X).Dt[X], X -> r1[t], {t, t0, t1}] // RepeatedTiming
(*
{0.196, 1/4 (-4 t0^3 Cos[2 π t0] + 4 t1^3 Cos[2 π t1] +
5 Sin[2 π t0] + Sin[6 π t0] - 5 Sin[2 π t1] -
Sin[6 π t1])}
*)
lineInt[F @@ X, X -> r1[t], {t, t0, t1}] // RepeatedTiming
(*
{2.19, 1/4 (-4 t0^3 Cos[2 π t0] + 4 t1^3 Cos[2 π t1] +
5 Sin[2 π t0] + Sin[6 π t0] - 5 Sin[2 π t1] -
Sin[6 π t1])}
*)
Integrate
must do a lot of checking that DSolve
skips, I guess.
add a comment |
up vote
0
down vote
Here are two ways, one involving DSolve
and differential one-forms (the first one is like the others, except for being packaged up in a line integral function). See this answer by LLlAMnYP for the DSolve
approach.
(*Remove[Global`W,Global`oneFormQ];*) (* commented out package-like stuff *)
ClearAll[lineInt];
(*Begin["lineInt`"];*)
(* integrate a vector field *)
lineInt[F_?VectorQ, c : (X_?VectorQ -> rt_?VectorQ), {t_, a_, b_},
opts : OptionsPattern[Integrate]] :=
Integrate[(F /. Thread[c]).D[rt, t], {t, a, b}, opts];
(* integrate a one form *)
oneFormQ[ω_, X_] :=
Internal`LinearQ[ω, Dt[X]] &&
PossibleZeroQ[ω /. Thread[Dt[X] -> 0]];
lineInt[ω_, c : (X_?VectorQ -> rt_?VectorQ), {t_, a_, b_},
opts : OptionsPattern[DSolve]] := Block[{W},
DSolveValue[
{{Dt[W[t]] == ω, Dt[X] == Dt[rt]} /.
Thread[X -> Through[X[t]]],
W[a] == 0, Through[X[a]] == rt /. t -> a},
W[b],
t, opts] /; oneFormQ[ω, X]
];
(*End;*)
X = {x, y, z};
lineInt[(F @@ X).Dt[X], X -> r1[t], {t, t0, t1}] // RepeatedTiming
(*
{0.196, 1/4 (-4 t0^3 Cos[2 π t0] + 4 t1^3 Cos[2 π t1] +
5 Sin[2 π t0] + Sin[6 π t0] - 5 Sin[2 π t1] -
Sin[6 π t1])}
*)
lineInt[F @@ X, X -> r1[t], {t, t0, t1}] // RepeatedTiming
(*
{2.19, 1/4 (-4 t0^3 Cos[2 π t0] + 4 t1^3 Cos[2 π t1] +
5 Sin[2 π t0] + Sin[6 π t0] - 5 Sin[2 π t1] -
Sin[6 π t1])}
*)
Integrate
must do a lot of checking that DSolve
skips, I guess.
add a comment |
up vote
0
down vote
up vote
0
down vote
Here are two ways, one involving DSolve
and differential one-forms (the first one is like the others, except for being packaged up in a line integral function). See this answer by LLlAMnYP for the DSolve
approach.
(*Remove[Global`W,Global`oneFormQ];*) (* commented out package-like stuff *)
ClearAll[lineInt];
(*Begin["lineInt`"];*)
(* integrate a vector field *)
lineInt[F_?VectorQ, c : (X_?VectorQ -> rt_?VectorQ), {t_, a_, b_},
opts : OptionsPattern[Integrate]] :=
Integrate[(F /. Thread[c]).D[rt, t], {t, a, b}, opts];
(* integrate a one form *)
oneFormQ[ω_, X_] :=
Internal`LinearQ[ω, Dt[X]] &&
PossibleZeroQ[ω /. Thread[Dt[X] -> 0]];
lineInt[ω_, c : (X_?VectorQ -> rt_?VectorQ), {t_, a_, b_},
opts : OptionsPattern[DSolve]] := Block[{W},
DSolveValue[
{{Dt[W[t]] == ω, Dt[X] == Dt[rt]} /.
Thread[X -> Through[X[t]]],
W[a] == 0, Through[X[a]] == rt /. t -> a},
W[b],
t, opts] /; oneFormQ[ω, X]
];
(*End;*)
X = {x, y, z};
lineInt[(F @@ X).Dt[X], X -> r1[t], {t, t0, t1}] // RepeatedTiming
(*
{0.196, 1/4 (-4 t0^3 Cos[2 π t0] + 4 t1^3 Cos[2 π t1] +
5 Sin[2 π t0] + Sin[6 π t0] - 5 Sin[2 π t1] -
Sin[6 π t1])}
*)
lineInt[F @@ X, X -> r1[t], {t, t0, t1}] // RepeatedTiming
(*
{2.19, 1/4 (-4 t0^3 Cos[2 π t0] + 4 t1^3 Cos[2 π t1] +
5 Sin[2 π t0] + Sin[6 π t0] - 5 Sin[2 π t1] -
Sin[6 π t1])}
*)
Integrate
must do a lot of checking that DSolve
skips, I guess.
Here are two ways, one involving DSolve
and differential one-forms (the first one is like the others, except for being packaged up in a line integral function). See this answer by LLlAMnYP for the DSolve
approach.
(*Remove[Global`W,Global`oneFormQ];*) (* commented out package-like stuff *)
ClearAll[lineInt];
(*Begin["lineInt`"];*)
(* integrate a vector field *)
lineInt[F_?VectorQ, c : (X_?VectorQ -> rt_?VectorQ), {t_, a_, b_},
opts : OptionsPattern[Integrate]] :=
Integrate[(F /. Thread[c]).D[rt, t], {t, a, b}, opts];
(* integrate a one form *)
oneFormQ[ω_, X_] :=
Internal`LinearQ[ω, Dt[X]] &&
PossibleZeroQ[ω /. Thread[Dt[X] -> 0]];
lineInt[ω_, c : (X_?VectorQ -> rt_?VectorQ), {t_, a_, b_},
opts : OptionsPattern[DSolve]] := Block[{W},
DSolveValue[
{{Dt[W[t]] == ω, Dt[X] == Dt[rt]} /.
Thread[X -> Through[X[t]]],
W[a] == 0, Through[X[a]] == rt /. t -> a},
W[b],
t, opts] /; oneFormQ[ω, X]
];
(*End;*)
X = {x, y, z};
lineInt[(F @@ X).Dt[X], X -> r1[t], {t, t0, t1}] // RepeatedTiming
(*
{0.196, 1/4 (-4 t0^3 Cos[2 π t0] + 4 t1^3 Cos[2 π t1] +
5 Sin[2 π t0] + Sin[6 π t0] - 5 Sin[2 π t1] -
Sin[6 π t1])}
*)
lineInt[F @@ X, X -> r1[t], {t, t0, t1}] // RepeatedTiming
(*
{2.19, 1/4 (-4 t0^3 Cos[2 π t0] + 4 t1^3 Cos[2 π t1] +
5 Sin[2 π t0] + Sin[6 π t0] - 5 Sin[2 π t1] -
Sin[6 π t1])}
*)
Integrate
must do a lot of checking that DSolve
skips, I guess.
answered 22 mins ago
Michael E2
144k11194463
144k11194463
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f187983%2fwork-of-a-force-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
It should be
Cos[2*Pi*t]
orCos[2 Pi t]
, notcos(2*Pi*t)
.– Henrik Schumacher
7 hours ago