Evaluate the limit of...











up vote
4
down vote

favorite
4












$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$





My try:



The limit can be written as follows:



$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$



Evaluate the following series:



$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$



$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$



Then:



$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.



Therefore:



$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$



What to do next?










share|cite|improve this question




















  • 3




    You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
    – xbh
    yesterday















up vote
4
down vote

favorite
4












$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$





My try:



The limit can be written as follows:



$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$



Evaluate the following series:



$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$



$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$



Then:



$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.



Therefore:



$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$



What to do next?










share|cite|improve this question




















  • 3




    You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
    – xbh
    yesterday













up vote
4
down vote

favorite
4









up vote
4
down vote

favorite
4






4





$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$





My try:



The limit can be written as follows:



$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$



Evaluate the following series:



$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$



$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$



Then:



$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.



Therefore:



$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$



What to do next?










share|cite|improve this question















$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$





My try:



The limit can be written as follows:



$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$



Evaluate the following series:



$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$



$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$



Then:



$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.



Therefore:



$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$



What to do next?







calculus sequences-and-series limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Asaf Karagila

300k32421751




300k32421751










asked yesterday









user605734 MBS

1669




1669








  • 3




    You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
    – xbh
    yesterday














  • 3




    You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
    – xbh
    yesterday








3




3




You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
yesterday




You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
yesterday










3 Answers
3






active

oldest

votes

















up vote
5
down vote



accepted










HINT



We have that by Stolz-Cesaro



$$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$



$$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$






share|cite|improve this answer




























    up vote
    2
    down vote













    Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
    and
    $$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
    Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
    ?






    share|cite|improve this answer






























      up vote
      1
      down vote













      Thanks to user xbh for the hint:



      Using the Stolz-Cesàro theorem, we have:



      $a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$



      $b_n=n^2$



      Two monotone and increasing sequences.



      Apply the theorem to get:



      $frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$



      Then:



      $lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$






      share|cite|improve this answer

















      • 2




        Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
        – gimusi
        yesterday













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025640%2fevaluate-the-limit-of-lim-n-to-infty-frac1n2-left-frac21-frac9%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      5
      down vote



      accepted










      HINT



      We have that by Stolz-Cesaro



      $$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$



      $$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$






      share|cite|improve this answer

























        up vote
        5
        down vote



        accepted










        HINT



        We have that by Stolz-Cesaro



        $$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$



        $$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$






        share|cite|improve this answer























          up vote
          5
          down vote



          accepted







          up vote
          5
          down vote



          accepted






          HINT



          We have that by Stolz-Cesaro



          $$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$



          $$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$






          share|cite|improve this answer












          HINT



          We have that by Stolz-Cesaro



          $$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$



          $$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          gimusi

          90k74495




          90k74495






















              up vote
              2
              down vote













              Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
              and
              $$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
              Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
              ?






              share|cite|improve this answer



























                up vote
                2
                down vote













                Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
                and
                $$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
                Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
                ?






                share|cite|improve this answer

























                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
                  and
                  $$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
                  Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
                  ?






                  share|cite|improve this answer














                  Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
                  and
                  $$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
                  Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
                  ?







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited yesterday

























                  answered yesterday









                  Robert Israel

                  315k23206453




                  315k23206453






















                      up vote
                      1
                      down vote













                      Thanks to user xbh for the hint:



                      Using the Stolz-Cesàro theorem, we have:



                      $a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$



                      $b_n=n^2$



                      Two monotone and increasing sequences.



                      Apply the theorem to get:



                      $frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$



                      Then:



                      $lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$






                      share|cite|improve this answer

















                      • 2




                        Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
                        – gimusi
                        yesterday

















                      up vote
                      1
                      down vote













                      Thanks to user xbh for the hint:



                      Using the Stolz-Cesàro theorem, we have:



                      $a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$



                      $b_n=n^2$



                      Two monotone and increasing sequences.



                      Apply the theorem to get:



                      $frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$



                      Then:



                      $lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$






                      share|cite|improve this answer

















                      • 2




                        Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
                        – gimusi
                        yesterday















                      up vote
                      1
                      down vote










                      up vote
                      1
                      down vote









                      Thanks to user xbh for the hint:



                      Using the Stolz-Cesàro theorem, we have:



                      $a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$



                      $b_n=n^2$



                      Two monotone and increasing sequences.



                      Apply the theorem to get:



                      $frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$



                      Then:



                      $lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$






                      share|cite|improve this answer












                      Thanks to user xbh for the hint:



                      Using the Stolz-Cesàro theorem, we have:



                      $a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$



                      $b_n=n^2$



                      Two monotone and increasing sequences.



                      Apply the theorem to get:



                      $frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$



                      Then:



                      $lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered yesterday









                      user605734 MBS

                      1669




                      1669








                      • 2




                        Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
                        – gimusi
                        yesterday
















                      • 2




                        Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
                        – gimusi
                        yesterday










                      2




                      2




                      Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
                      – gimusi
                      yesterday






                      Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
                      – gimusi
                      yesterday




















                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025640%2fevaluate-the-limit-of-lim-n-to-infty-frac1n2-left-frac21-frac9%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Ellipse (mathématiques)

                      Quarter-circle Tiles

                      Mont Emei