Evaluate the limit of...
up vote
4
down vote
favorite
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$
My try:
The limit can be written as follows:
$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$
Evaluate the following series:
$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$
$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$
Then:
$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.
Therefore:
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$
What to do next?
calculus sequences-and-series limits
add a comment |
up vote
4
down vote
favorite
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$
My try:
The limit can be written as follows:
$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$
Evaluate the following series:
$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$
$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$
Then:
$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.
Therefore:
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$
What to do next?
calculus sequences-and-series limits
3
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
yesterday
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$
My try:
The limit can be written as follows:
$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$
Evaluate the following series:
$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$
$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$
Then:
$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.
Therefore:
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$
What to do next?
calculus sequences-and-series limits
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$
My try:
The limit can be written as follows:
$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$
Evaluate the following series:
$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$
$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$
Then:
$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.
Therefore:
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$
What to do next?
calculus sequences-and-series limits
calculus sequences-and-series limits
edited yesterday
Asaf Karagila♦
300k32421751
300k32421751
asked yesterday
user605734 MBS
1669
1669
3
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
yesterday
add a comment |
3
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
yesterday
3
3
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
yesterday
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
yesterday
add a comment |
3 Answers
3
active
oldest
votes
up vote
5
down vote
accepted
HINT
We have that by Stolz-Cesaro
$$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$
$$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$
add a comment |
up vote
2
down vote
Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
and
$$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
?
add a comment |
up vote
1
down vote
Thanks to user xbh for the hint:
Using the Stolz-Cesàro theorem, we have:
$a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$
$b_n=n^2$
Two monotone and increasing sequences.
Apply the theorem to get:
$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$
Then:
$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$
2
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
yesterday
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
HINT
We have that by Stolz-Cesaro
$$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$
$$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$
add a comment |
up vote
5
down vote
accepted
HINT
We have that by Stolz-Cesaro
$$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$
$$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$
add a comment |
up vote
5
down vote
accepted
up vote
5
down vote
accepted
HINT
We have that by Stolz-Cesaro
$$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$
$$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$
HINT
We have that by Stolz-Cesaro
$$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$
$$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$
answered yesterday
gimusi
90k74495
90k74495
add a comment |
add a comment |
up vote
2
down vote
Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
and
$$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
?
add a comment |
up vote
2
down vote
Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
and
$$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
?
add a comment |
up vote
2
down vote
up vote
2
down vote
Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
and
$$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
?
Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
and
$$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
?
edited yesterday
answered yesterday
Robert Israel
315k23206453
315k23206453
add a comment |
add a comment |
up vote
1
down vote
Thanks to user xbh for the hint:
Using the Stolz-Cesàro theorem, we have:
$a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$
$b_n=n^2$
Two monotone and increasing sequences.
Apply the theorem to get:
$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$
Then:
$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$
2
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
yesterday
add a comment |
up vote
1
down vote
Thanks to user xbh for the hint:
Using the Stolz-Cesàro theorem, we have:
$a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$
$b_n=n^2$
Two monotone and increasing sequences.
Apply the theorem to get:
$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$
Then:
$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$
2
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
yesterday
add a comment |
up vote
1
down vote
up vote
1
down vote
Thanks to user xbh for the hint:
Using the Stolz-Cesàro theorem, we have:
$a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$
$b_n=n^2$
Two monotone and increasing sequences.
Apply the theorem to get:
$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$
Then:
$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$
Thanks to user xbh for the hint:
Using the Stolz-Cesàro theorem, we have:
$a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$
$b_n=n^2$
Two monotone and increasing sequences.
Apply the theorem to get:
$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$
Then:
$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$
answered yesterday
user605734 MBS
1669
1669
2
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
yesterday
add a comment |
2
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
yesterday
2
2
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
yesterday
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
yesterday
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025640%2fevaluate-the-limit-of-lim-n-to-infty-frac1n2-left-frac21-frac9%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
yesterday