Finding Eigenvalues of matrix with sum of all rows being equal
up vote
1
down vote
favorite
$begin{bmatrix}
101 & 2 &3 &4 &5 \
1 & 102 &3 &4 &5 \
1 & 2 & 103 &4 &5 \
1& 2 &3 &104 &5 \
1 & 2 &3 &4 & 105
end{bmatrix}$
Sum of all rows of this matrix is 115 hence $exists lambda = 115$
Now is there any property that can be used to find out remaining eigenvalues of this matrix?
remaining 4 eigenvalues are 100.
linear-algebra matrices eigenvalues-eigenvectors
add a comment |
up vote
1
down vote
favorite
$begin{bmatrix}
101 & 2 &3 &4 &5 \
1 & 102 &3 &4 &5 \
1 & 2 & 103 &4 &5 \
1& 2 &3 &104 &5 \
1 & 2 &3 &4 & 105
end{bmatrix}$
Sum of all rows of this matrix is 115 hence $exists lambda = 115$
Now is there any property that can be used to find out remaining eigenvalues of this matrix?
remaining 4 eigenvalues are 100.
linear-algebra matrices eigenvalues-eigenvectors
another property is that the trace is the sum of all eigenvalues.
– pointguard0
12 hours ago
that tells us sum of remaining eigenvalues is 400 but i can't guess from that the remaining all are 100
– Mk Utkarsh
12 hours ago
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
$begin{bmatrix}
101 & 2 &3 &4 &5 \
1 & 102 &3 &4 &5 \
1 & 2 & 103 &4 &5 \
1& 2 &3 &104 &5 \
1 & 2 &3 &4 & 105
end{bmatrix}$
Sum of all rows of this matrix is 115 hence $exists lambda = 115$
Now is there any property that can be used to find out remaining eigenvalues of this matrix?
remaining 4 eigenvalues are 100.
linear-algebra matrices eigenvalues-eigenvectors
$begin{bmatrix}
101 & 2 &3 &4 &5 \
1 & 102 &3 &4 &5 \
1 & 2 & 103 &4 &5 \
1& 2 &3 &104 &5 \
1 & 2 &3 &4 & 105
end{bmatrix}$
Sum of all rows of this matrix is 115 hence $exists lambda = 115$
Now is there any property that can be used to find out remaining eigenvalues of this matrix?
remaining 4 eigenvalues are 100.
linear-algebra matrices eigenvalues-eigenvectors
linear-algebra matrices eigenvalues-eigenvectors
edited 12 hours ago
José Carlos Santos
138k18110200
138k18110200
asked 12 hours ago
Mk Utkarsh
7719
7719
another property is that the trace is the sum of all eigenvalues.
– pointguard0
12 hours ago
that tells us sum of remaining eigenvalues is 400 but i can't guess from that the remaining all are 100
– Mk Utkarsh
12 hours ago
add a comment |
another property is that the trace is the sum of all eigenvalues.
– pointguard0
12 hours ago
that tells us sum of remaining eigenvalues is 400 but i can't guess from that the remaining all are 100
– Mk Utkarsh
12 hours ago
another property is that the trace is the sum of all eigenvalues.
– pointguard0
12 hours ago
another property is that the trace is the sum of all eigenvalues.
– pointguard0
12 hours ago
that tells us sum of remaining eigenvalues is 400 but i can't guess from that the remaining all are 100
– Mk Utkarsh
12 hours ago
that tells us sum of remaining eigenvalues is 400 but i can't guess from that the remaining all are 100
– Mk Utkarsh
12 hours ago
add a comment |
1 Answer
1
active
oldest
votes
up vote
3
down vote
Let $A$ be your matrix and let$$B=begin{bmatrix}1&2&3&4&5\1&2&3&4&5\1&2&3&4&5\1&2&3&4&5\1&2&3&4&5end{bmatrix};$$then $A=B+100operatorname{Id}$. Since the dimension of the space spanned by the columns of $B$ is $1$ and since $B$ is a $5times5$ matrix, the characteristic polynomial of $B$ is of the type $x^4(a-x)=ax^4-x^5$, for some $ainmathbb R$. On the other hand, by the same argument that you used, $15$ is an eigenvalue of $B$. Therefore, the eigenvalues of $B$ are $0$ ($4$ times) and $15$. So, the eigenvalues of $A$ are $100$ ($4$ times) and $115$.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Let $A$ be your matrix and let$$B=begin{bmatrix}1&2&3&4&5\1&2&3&4&5\1&2&3&4&5\1&2&3&4&5\1&2&3&4&5end{bmatrix};$$then $A=B+100operatorname{Id}$. Since the dimension of the space spanned by the columns of $B$ is $1$ and since $B$ is a $5times5$ matrix, the characteristic polynomial of $B$ is of the type $x^4(a-x)=ax^4-x^5$, for some $ainmathbb R$. On the other hand, by the same argument that you used, $15$ is an eigenvalue of $B$. Therefore, the eigenvalues of $B$ are $0$ ($4$ times) and $15$. So, the eigenvalues of $A$ are $100$ ($4$ times) and $115$.
add a comment |
up vote
3
down vote
Let $A$ be your matrix and let$$B=begin{bmatrix}1&2&3&4&5\1&2&3&4&5\1&2&3&4&5\1&2&3&4&5\1&2&3&4&5end{bmatrix};$$then $A=B+100operatorname{Id}$. Since the dimension of the space spanned by the columns of $B$ is $1$ and since $B$ is a $5times5$ matrix, the characteristic polynomial of $B$ is of the type $x^4(a-x)=ax^4-x^5$, for some $ainmathbb R$. On the other hand, by the same argument that you used, $15$ is an eigenvalue of $B$. Therefore, the eigenvalues of $B$ are $0$ ($4$ times) and $15$. So, the eigenvalues of $A$ are $100$ ($4$ times) and $115$.
add a comment |
up vote
3
down vote
up vote
3
down vote
Let $A$ be your matrix and let$$B=begin{bmatrix}1&2&3&4&5\1&2&3&4&5\1&2&3&4&5\1&2&3&4&5\1&2&3&4&5end{bmatrix};$$then $A=B+100operatorname{Id}$. Since the dimension of the space spanned by the columns of $B$ is $1$ and since $B$ is a $5times5$ matrix, the characteristic polynomial of $B$ is of the type $x^4(a-x)=ax^4-x^5$, for some $ainmathbb R$. On the other hand, by the same argument that you used, $15$ is an eigenvalue of $B$. Therefore, the eigenvalues of $B$ are $0$ ($4$ times) and $15$. So, the eigenvalues of $A$ are $100$ ($4$ times) and $115$.
Let $A$ be your matrix and let$$B=begin{bmatrix}1&2&3&4&5\1&2&3&4&5\1&2&3&4&5\1&2&3&4&5\1&2&3&4&5end{bmatrix};$$then $A=B+100operatorname{Id}$. Since the dimension of the space spanned by the columns of $B$ is $1$ and since $B$ is a $5times5$ matrix, the characteristic polynomial of $B$ is of the type $x^4(a-x)=ax^4-x^5$, for some $ainmathbb R$. On the other hand, by the same argument that you used, $15$ is an eigenvalue of $B$. Therefore, the eigenvalues of $B$ are $0$ ($4$ times) and $15$. So, the eigenvalues of $A$ are $100$ ($4$ times) and $115$.
answered 12 hours ago
José Carlos Santos
138k18110200
138k18110200
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999434%2ffinding-eigenvalues-of-matrix-with-sum-of-all-rows-being-equal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
another property is that the trace is the sum of all eigenvalues.
– pointguard0
12 hours ago
that tells us sum of remaining eigenvalues is 400 but i can't guess from that the remaining all are 100
– Mk Utkarsh
12 hours ago