Limit to compare growth of function
up vote
2
down vote
favorite
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
add a comment |
up vote
2
down vote
favorite
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
limits
edited 9 hours ago
user376343
2,1041716
2,1041716
asked 13 hours ago
user3767495
1348
1348
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
Same time, same answer !
– Claude Leibovici
13 hours ago
add a comment |
up vote
3
down vote
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
Same time, same answer !
– Claude Leibovici
13 hours ago
add a comment |
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
Same time, same answer !
– Claude Leibovici
13 hours ago
add a comment |
up vote
3
down vote
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
answered 13 hours ago
Kavi Rama Murthy
39k31748
39k31748
Same time, same answer !
– Claude Leibovici
13 hours ago
add a comment |
Same time, same answer !
– Claude Leibovici
13 hours ago
Same time, same answer !
– Claude Leibovici
13 hours ago
Same time, same answer !
– Claude Leibovici
13 hours ago
add a comment |
up vote
3
down vote
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
add a comment |
up vote
3
down vote
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
add a comment |
up vote
3
down vote
up vote
3
down vote
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
answered 13 hours ago
Claude Leibovici
116k1156131
116k1156131
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999277%2flimit-to-compare-growth-of-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown