How to compute $(-1)^{n+1}n!(1-esum_{k=0}^nfrac{(-1)^k}{k!})$?
up vote
2
down vote
favorite
I was doing some work on the integral $int_0^1 x^ne^x dx$ and I eventually came to this expression in terms of n $$int_0^1 x^ne^x dx=(-1)^{n+1}n!biggl(1-esum_{k=0}^nfrac{(-1)^k}{k!}biggr)$$ Now my question is this, how do I compute the limit of this expression as $n$ goes to $infty$? I recognize that $$lim_{ntoinfty}esum_{k=0}^{n}frac{(-1)^k}{k!}=1$$ per the series expression of $e^x$ at $-1$. This gives me an indeterminate form, but I can't apply L'Hopital's rule because I can't differentiate $n!$ (or $1/n!$ as the case would be after re-arranging), and I also can't think of a variable substitution that would help me here. Common sense and wolfram definitely imply that the limit is in fact $0$, but how can I show this?
calculus integration limits definite-integrals exponential-function
add a comment |
up vote
2
down vote
favorite
I was doing some work on the integral $int_0^1 x^ne^x dx$ and I eventually came to this expression in terms of n $$int_0^1 x^ne^x dx=(-1)^{n+1}n!biggl(1-esum_{k=0}^nfrac{(-1)^k}{k!}biggr)$$ Now my question is this, how do I compute the limit of this expression as $n$ goes to $infty$? I recognize that $$lim_{ntoinfty}esum_{k=0}^{n}frac{(-1)^k}{k!}=1$$ per the series expression of $e^x$ at $-1$. This gives me an indeterminate form, but I can't apply L'Hopital's rule because I can't differentiate $n!$ (or $1/n!$ as the case would be after re-arranging), and I also can't think of a variable substitution that would help me here. Common sense and wolfram definitely imply that the limit is in fact $0$, but how can I show this?
calculus integration limits definite-integrals exponential-function
3
$n!=Gamma(n+1)$ is differentiable.
– J.G.
2 days ago
1
perhaps some properties of the gamma function/complex analysis would be useful
– rubikscube09
2 days ago
I'm not very familiar with the gamma function, is there any other way? And if not, how could I use the gamma function to do this? Also, would it be sufficient to show that the integrand approaches $0$ on the interval?
– JacksonFitzsimmons
2 days ago
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I was doing some work on the integral $int_0^1 x^ne^x dx$ and I eventually came to this expression in terms of n $$int_0^1 x^ne^x dx=(-1)^{n+1}n!biggl(1-esum_{k=0}^nfrac{(-1)^k}{k!}biggr)$$ Now my question is this, how do I compute the limit of this expression as $n$ goes to $infty$? I recognize that $$lim_{ntoinfty}esum_{k=0}^{n}frac{(-1)^k}{k!}=1$$ per the series expression of $e^x$ at $-1$. This gives me an indeterminate form, but I can't apply L'Hopital's rule because I can't differentiate $n!$ (or $1/n!$ as the case would be after re-arranging), and I also can't think of a variable substitution that would help me here. Common sense and wolfram definitely imply that the limit is in fact $0$, but how can I show this?
calculus integration limits definite-integrals exponential-function
I was doing some work on the integral $int_0^1 x^ne^x dx$ and I eventually came to this expression in terms of n $$int_0^1 x^ne^x dx=(-1)^{n+1}n!biggl(1-esum_{k=0}^nfrac{(-1)^k}{k!}biggr)$$ Now my question is this, how do I compute the limit of this expression as $n$ goes to $infty$? I recognize that $$lim_{ntoinfty}esum_{k=0}^{n}frac{(-1)^k}{k!}=1$$ per the series expression of $e^x$ at $-1$. This gives me an indeterminate form, but I can't apply L'Hopital's rule because I can't differentiate $n!$ (or $1/n!$ as the case would be after re-arranging), and I also can't think of a variable substitution that would help me here. Common sense and wolfram definitely imply that the limit is in fact $0$, but how can I show this?
calculus integration limits definite-integrals exponential-function
calculus integration limits definite-integrals exponential-function
edited 2 days ago
user21820
37.9k441148
37.9k441148
asked 2 days ago
JacksonFitzsimmons
551212
551212
3
$n!=Gamma(n+1)$ is differentiable.
– J.G.
2 days ago
1
perhaps some properties of the gamma function/complex analysis would be useful
– rubikscube09
2 days ago
I'm not very familiar with the gamma function, is there any other way? And if not, how could I use the gamma function to do this? Also, would it be sufficient to show that the integrand approaches $0$ on the interval?
– JacksonFitzsimmons
2 days ago
add a comment |
3
$n!=Gamma(n+1)$ is differentiable.
– J.G.
2 days ago
1
perhaps some properties of the gamma function/complex analysis would be useful
– rubikscube09
2 days ago
I'm not very familiar with the gamma function, is there any other way? And if not, how could I use the gamma function to do this? Also, would it be sufficient to show that the integrand approaches $0$ on the interval?
– JacksonFitzsimmons
2 days ago
3
3
$n!=Gamma(n+1)$ is differentiable.
– J.G.
2 days ago
$n!=Gamma(n+1)$ is differentiable.
– J.G.
2 days ago
1
1
perhaps some properties of the gamma function/complex analysis would be useful
– rubikscube09
2 days ago
perhaps some properties of the gamma function/complex analysis would be useful
– rubikscube09
2 days ago
I'm not very familiar with the gamma function, is there any other way? And if not, how could I use the gamma function to do this? Also, would it be sufficient to show that the integrand approaches $0$ on the interval?
– JacksonFitzsimmons
2 days ago
I'm not very familiar with the gamma function, is there any other way? And if not, how could I use the gamma function to do this? Also, would it be sufficient to show that the integrand approaches $0$ on the interval?
– JacksonFitzsimmons
2 days ago
add a comment |
3 Answers
3
active
oldest
votes
up vote
5
down vote
accepted
When $xin [0,1]$, $e^xle e$, by first mean value theorem for definite integrals,
begin{align*}
I_n&lemax_{xin[0,1]}{e^x}int_0^1x^{n}~mathrm dx\
&=frac{e}{n+1}to0.
end{align*}
Since $I_n>0$, the limit is $0$ by squeeze theorem.
Thanks, I never remember the squeeze theorem
– JacksonFitzsimmons
2 days ago
add a comment |
up vote
4
down vote
Not as slick as Tianlalu's method, but for $yin (0,,1)$ we have
$$
lim_{ntoinfty}int_0^y x^n e^x dx le
lim_{ntoinfty}y^nint_0^y e^x dx=0.
$$
add a comment |
up vote
2
down vote
I don't know what you are 'allowed' to use but you could use the lagrange remainer for the exponential function:
$$exp(-1)=sum_{k=0}^nfrac{(-1)^k}{k!}+frac{e^xi}{(n+1)!}(-1)^{n+1}$$
for some $-1<xi<0$. If you estimate $e^xi $ and replace the sum you get convergence to $0$.
New contributor
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
When $xin [0,1]$, $e^xle e$, by first mean value theorem for definite integrals,
begin{align*}
I_n&lemax_{xin[0,1]}{e^x}int_0^1x^{n}~mathrm dx\
&=frac{e}{n+1}to0.
end{align*}
Since $I_n>0$, the limit is $0$ by squeeze theorem.
Thanks, I never remember the squeeze theorem
– JacksonFitzsimmons
2 days ago
add a comment |
up vote
5
down vote
accepted
When $xin [0,1]$, $e^xle e$, by first mean value theorem for definite integrals,
begin{align*}
I_n&lemax_{xin[0,1]}{e^x}int_0^1x^{n}~mathrm dx\
&=frac{e}{n+1}to0.
end{align*}
Since $I_n>0$, the limit is $0$ by squeeze theorem.
Thanks, I never remember the squeeze theorem
– JacksonFitzsimmons
2 days ago
add a comment |
up vote
5
down vote
accepted
up vote
5
down vote
accepted
When $xin [0,1]$, $e^xle e$, by first mean value theorem for definite integrals,
begin{align*}
I_n&lemax_{xin[0,1]}{e^x}int_0^1x^{n}~mathrm dx\
&=frac{e}{n+1}to0.
end{align*}
Since $I_n>0$, the limit is $0$ by squeeze theorem.
When $xin [0,1]$, $e^xle e$, by first mean value theorem for definite integrals,
begin{align*}
I_n&lemax_{xin[0,1]}{e^x}int_0^1x^{n}~mathrm dx\
&=frac{e}{n+1}to0.
end{align*}
Since $I_n>0$, the limit is $0$ by squeeze theorem.
answered 2 days ago
Tianlalu
2,416632
2,416632
Thanks, I never remember the squeeze theorem
– JacksonFitzsimmons
2 days ago
add a comment |
Thanks, I never remember the squeeze theorem
– JacksonFitzsimmons
2 days ago
Thanks, I never remember the squeeze theorem
– JacksonFitzsimmons
2 days ago
Thanks, I never remember the squeeze theorem
– JacksonFitzsimmons
2 days ago
add a comment |
up vote
4
down vote
Not as slick as Tianlalu's method, but for $yin (0,,1)$ we have
$$
lim_{ntoinfty}int_0^y x^n e^x dx le
lim_{ntoinfty}y^nint_0^y e^x dx=0.
$$
add a comment |
up vote
4
down vote
Not as slick as Tianlalu's method, but for $yin (0,,1)$ we have
$$
lim_{ntoinfty}int_0^y x^n e^x dx le
lim_{ntoinfty}y^nint_0^y e^x dx=0.
$$
add a comment |
up vote
4
down vote
up vote
4
down vote
Not as slick as Tianlalu's method, but for $yin (0,,1)$ we have
$$
lim_{ntoinfty}int_0^y x^n e^x dx le
lim_{ntoinfty}y^nint_0^y e^x dx=0.
$$
Not as slick as Tianlalu's method, but for $yin (0,,1)$ we have
$$
lim_{ntoinfty}int_0^y x^n e^x dx le
lim_{ntoinfty}y^nint_0^y e^x dx=0.
$$
edited 2 days ago
Tianlalu
2,416632
2,416632
answered 2 days ago
J.G.
17.9k11830
17.9k11830
add a comment |
add a comment |
up vote
2
down vote
I don't know what you are 'allowed' to use but you could use the lagrange remainer for the exponential function:
$$exp(-1)=sum_{k=0}^nfrac{(-1)^k}{k!}+frac{e^xi}{(n+1)!}(-1)^{n+1}$$
for some $-1<xi<0$. If you estimate $e^xi $ and replace the sum you get convergence to $0$.
New contributor
add a comment |
up vote
2
down vote
I don't know what you are 'allowed' to use but you could use the lagrange remainer for the exponential function:
$$exp(-1)=sum_{k=0}^nfrac{(-1)^k}{k!}+frac{e^xi}{(n+1)!}(-1)^{n+1}$$
for some $-1<xi<0$. If you estimate $e^xi $ and replace the sum you get convergence to $0$.
New contributor
add a comment |
up vote
2
down vote
up vote
2
down vote
I don't know what you are 'allowed' to use but you could use the lagrange remainer for the exponential function:
$$exp(-1)=sum_{k=0}^nfrac{(-1)^k}{k!}+frac{e^xi}{(n+1)!}(-1)^{n+1}$$
for some $-1<xi<0$. If you estimate $e^xi $ and replace the sum you get convergence to $0$.
New contributor
I don't know what you are 'allowed' to use but you could use the lagrange remainer for the exponential function:
$$exp(-1)=sum_{k=0}^nfrac{(-1)^k}{k!}+frac{e^xi}{(n+1)!}(-1)^{n+1}$$
for some $-1<xi<0$. If you estimate $e^xi $ and replace the sum you get convergence to $0$.
New contributor
New contributor
answered 2 days ago
maxmilgram
3437
3437
New contributor
New contributor
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999327%2fhow-to-compute-1n1n1-e-sum-k-0n-frac-1kk%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$n!=Gamma(n+1)$ is differentiable.
– J.G.
2 days ago
1
perhaps some properties of the gamma function/complex analysis would be useful
– rubikscube09
2 days ago
I'm not very familiar with the gamma function, is there any other way? And if not, how could I use the gamma function to do this? Also, would it be sufficient to show that the integrand approaches $0$ on the interval?
– JacksonFitzsimmons
2 days ago