Is there an easy way to compute the jacobian of a normalized vector?











up vote
0
down vote

favorite












If $x in mathbb{R}^3$ I want to compute the jacobian of the following function



$$
f(x) = frac{x}{lVert x rVert }
$$



If I proceed I get a matrix whose elements are



$$
a_{ij} = begin{cases}
frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
-frac{x_i x_j}{lVert x rVert^3} &i neq j
end{cases}
$$



Is this the most compact form?
The derivation is based on the product rule componentwise.










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    If $x in mathbb{R}^3$ I want to compute the jacobian of the following function



    $$
    f(x) = frac{x}{lVert x rVert }
    $$



    If I proceed I get a matrix whose elements are



    $$
    a_{ij} = begin{cases}
    frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
    -frac{x_i x_j}{lVert x rVert^3} &i neq j
    end{cases}
    $$



    Is this the most compact form?
    The derivation is based on the product rule componentwise.










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      If $x in mathbb{R}^3$ I want to compute the jacobian of the following function



      $$
      f(x) = frac{x}{lVert x rVert }
      $$



      If I proceed I get a matrix whose elements are



      $$
      a_{ij} = begin{cases}
      frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
      -frac{x_i x_j}{lVert x rVert^3} &i neq j
      end{cases}
      $$



      Is this the most compact form?
      The derivation is based on the product rule componentwise.










      share|cite|improve this question















      If $x in mathbb{R}^3$ I want to compute the jacobian of the following function



      $$
      f(x) = frac{x}{lVert x rVert }
      $$



      If I proceed I get a matrix whose elements are



      $$
      a_{ij} = begin{cases}
      frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
      -frac{x_i x_j}{lVert x rVert^3} &i neq j
      end{cases}
      $$



      Is this the most compact form?
      The derivation is based on the product rule componentwise.







      multivariable-calculus jacobian






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 21 at 9:08

























      asked Aug 14 at 18:09









      user8469759

      1,3361616




      1,3361616






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          I get the same result:
          $$
          begin{align}
          J_{ij}
          &= partial_j left( frac{x}{lVert x rVert} right)_i \
          &= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
          &= frac{delta_{ij}}{lVert x rVert} +
          x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
          &= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
          end{align}
          $$






          share|cite|improve this answer





















          • Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
            – user8469759
            Aug 14 at 18:55













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2882762%2fis-there-an-easy-way-to-compute-the-jacobian-of-a-normalized-vector%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          0
          down vote













          I get the same result:
          $$
          begin{align}
          J_{ij}
          &= partial_j left( frac{x}{lVert x rVert} right)_i \
          &= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
          &= frac{delta_{ij}}{lVert x rVert} +
          x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
          &= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
          end{align}
          $$






          share|cite|improve this answer





















          • Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
            – user8469759
            Aug 14 at 18:55

















          up vote
          0
          down vote













          I get the same result:
          $$
          begin{align}
          J_{ij}
          &= partial_j left( frac{x}{lVert x rVert} right)_i \
          &= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
          &= frac{delta_{ij}}{lVert x rVert} +
          x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
          &= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
          end{align}
          $$






          share|cite|improve this answer





















          • Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
            – user8469759
            Aug 14 at 18:55















          up vote
          0
          down vote










          up vote
          0
          down vote









          I get the same result:
          $$
          begin{align}
          J_{ij}
          &= partial_j left( frac{x}{lVert x rVert} right)_i \
          &= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
          &= frac{delta_{ij}}{lVert x rVert} +
          x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
          &= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
          end{align}
          $$






          share|cite|improve this answer












          I get the same result:
          $$
          begin{align}
          J_{ij}
          &= partial_j left( frac{x}{lVert x rVert} right)_i \
          &= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
          &= frac{delta_{ij}}{lVert x rVert} +
          x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
          &= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
          end{align}
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Aug 14 at 18:20









          mvw

          31.3k22252




          31.3k22252












          • Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
            – user8469759
            Aug 14 at 18:55




















          • Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
            – user8469759
            Aug 14 at 18:55


















          Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
          – user8469759
          Aug 14 at 18:55






          Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
          – user8469759
          Aug 14 at 18:55




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2882762%2fis-there-an-easy-way-to-compute-the-jacobian-of-a-normalized-vector%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Quarter-circle Tiles

          build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

          Mont Emei