Is there an easy way to compute the jacobian of a normalized vector?
up vote
0
down vote
favorite
If $x in mathbb{R}^3$ I want to compute the jacobian of the following function
$$
f(x) = frac{x}{lVert x rVert }
$$
If I proceed I get a matrix whose elements are
$$
a_{ij} = begin{cases}
frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
-frac{x_i x_j}{lVert x rVert^3} &i neq j
end{cases}
$$
Is this the most compact form?
The derivation is based on the product rule componentwise.
multivariable-calculus jacobian
add a comment |
up vote
0
down vote
favorite
If $x in mathbb{R}^3$ I want to compute the jacobian of the following function
$$
f(x) = frac{x}{lVert x rVert }
$$
If I proceed I get a matrix whose elements are
$$
a_{ij} = begin{cases}
frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
-frac{x_i x_j}{lVert x rVert^3} &i neq j
end{cases}
$$
Is this the most compact form?
The derivation is based on the product rule componentwise.
multivariable-calculus jacobian
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
If $x in mathbb{R}^3$ I want to compute the jacobian of the following function
$$
f(x) = frac{x}{lVert x rVert }
$$
If I proceed I get a matrix whose elements are
$$
a_{ij} = begin{cases}
frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
-frac{x_i x_j}{lVert x rVert^3} &i neq j
end{cases}
$$
Is this the most compact form?
The derivation is based on the product rule componentwise.
multivariable-calculus jacobian
If $x in mathbb{R}^3$ I want to compute the jacobian of the following function
$$
f(x) = frac{x}{lVert x rVert }
$$
If I proceed I get a matrix whose elements are
$$
a_{ij} = begin{cases}
frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
-frac{x_i x_j}{lVert x rVert^3} &i neq j
end{cases}
$$
Is this the most compact form?
The derivation is based on the product rule componentwise.
multivariable-calculus jacobian
multivariable-calculus jacobian
edited Nov 21 at 9:08
asked Aug 14 at 18:09
user8469759
1,3361616
1,3361616
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
I get the same result:
$$
begin{align}
J_{ij}
&= partial_j left( frac{x}{lVert x rVert} right)_i \
&= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
&= frac{delta_{ij}}{lVert x rVert} +
x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
&= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
end{align}
$$
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 at 18:55
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
I get the same result:
$$
begin{align}
J_{ij}
&= partial_j left( frac{x}{lVert x rVert} right)_i \
&= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
&= frac{delta_{ij}}{lVert x rVert} +
x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
&= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
end{align}
$$
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 at 18:55
add a comment |
up vote
0
down vote
I get the same result:
$$
begin{align}
J_{ij}
&= partial_j left( frac{x}{lVert x rVert} right)_i \
&= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
&= frac{delta_{ij}}{lVert x rVert} +
x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
&= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
end{align}
$$
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 at 18:55
add a comment |
up vote
0
down vote
up vote
0
down vote
I get the same result:
$$
begin{align}
J_{ij}
&= partial_j left( frac{x}{lVert x rVert} right)_i \
&= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
&= frac{delta_{ij}}{lVert x rVert} +
x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
&= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
end{align}
$$
I get the same result:
$$
begin{align}
J_{ij}
&= partial_j left( frac{x}{lVert x rVert} right)_i \
&= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
&= frac{delta_{ij}}{lVert x rVert} +
x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
&= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
end{align}
$$
answered Aug 14 at 18:20
mvw
31.3k22252
31.3k22252
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 at 18:55
add a comment |
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 at 18:55
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 at 18:55
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 at 18:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2882762%2fis-there-an-easy-way-to-compute-the-jacobian-of-a-normalized-vector%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown