Homogeneous polynomial on unit sphere.
up vote
0
down vote
favorite
Suppose $ F $ is a homogeneous polynomial function of degree $ m $ on Euclidean space $ mathbb{R}^{n+1} $. Restrict $ F $ to the unit sphere $ S^n $ and we get a function on $ S^n $ denoted by $ f $, prove:
$(1)$ $ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 $;
$(2)$ $ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-m(m-1)f-mnf .$
Where $ nabla_{S^n}, nabla_{mathbb{R}^{n+1}} $ are gradients on $ S^n $ and $ mathbb{R}^{n+1} $ respectively, $ Delta_{S^n}, Delta_{mathbb{R}^{n+1}} $ are Laplace operators on $ S^n $ and $ mathbb{R}^{n+1} $ respectively.
Hint: Use Euler's homogeneous function theorem $ langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle=mF(z) $.
The question above comes from my Riemannian geometry textbook. Can someone give me a hint about how to deal with $ nabla_{S^n}f $ ? I can't find any direct relation between $ nabla_{S^n}f $ and $ nabla_{mathbb{R}^{n+1}}F $. Though we can use local coordinates to expand $ nabla_{S^n}f $ and compute directly, I am still looking forward to a more elegant way to do this.
differential-geometry riemannian-geometry
add a comment |
up vote
0
down vote
favorite
Suppose $ F $ is a homogeneous polynomial function of degree $ m $ on Euclidean space $ mathbb{R}^{n+1} $. Restrict $ F $ to the unit sphere $ S^n $ and we get a function on $ S^n $ denoted by $ f $, prove:
$(1)$ $ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 $;
$(2)$ $ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-m(m-1)f-mnf .$
Where $ nabla_{S^n}, nabla_{mathbb{R}^{n+1}} $ are gradients on $ S^n $ and $ mathbb{R}^{n+1} $ respectively, $ Delta_{S^n}, Delta_{mathbb{R}^{n+1}} $ are Laplace operators on $ S^n $ and $ mathbb{R}^{n+1} $ respectively.
Hint: Use Euler's homogeneous function theorem $ langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle=mF(z) $.
The question above comes from my Riemannian geometry textbook. Can someone give me a hint about how to deal with $ nabla_{S^n}f $ ? I can't find any direct relation between $ nabla_{S^n}f $ and $ nabla_{mathbb{R}^{n+1}}F $. Though we can use local coordinates to expand $ nabla_{S^n}f $ and compute directly, I am still looking forward to a more elegant way to do this.
differential-geometry riemannian-geometry
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Suppose $ F $ is a homogeneous polynomial function of degree $ m $ on Euclidean space $ mathbb{R}^{n+1} $. Restrict $ F $ to the unit sphere $ S^n $ and we get a function on $ S^n $ denoted by $ f $, prove:
$(1)$ $ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 $;
$(2)$ $ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-m(m-1)f-mnf .$
Where $ nabla_{S^n}, nabla_{mathbb{R}^{n+1}} $ are gradients on $ S^n $ and $ mathbb{R}^{n+1} $ respectively, $ Delta_{S^n}, Delta_{mathbb{R}^{n+1}} $ are Laplace operators on $ S^n $ and $ mathbb{R}^{n+1} $ respectively.
Hint: Use Euler's homogeneous function theorem $ langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle=mF(z) $.
The question above comes from my Riemannian geometry textbook. Can someone give me a hint about how to deal with $ nabla_{S^n}f $ ? I can't find any direct relation between $ nabla_{S^n}f $ and $ nabla_{mathbb{R}^{n+1}}F $. Though we can use local coordinates to expand $ nabla_{S^n}f $ and compute directly, I am still looking forward to a more elegant way to do this.
differential-geometry riemannian-geometry
Suppose $ F $ is a homogeneous polynomial function of degree $ m $ on Euclidean space $ mathbb{R}^{n+1} $. Restrict $ F $ to the unit sphere $ S^n $ and we get a function on $ S^n $ denoted by $ f $, prove:
$(1)$ $ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 $;
$(2)$ $ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-m(m-1)f-mnf .$
Where $ nabla_{S^n}, nabla_{mathbb{R}^{n+1}} $ are gradients on $ S^n $ and $ mathbb{R}^{n+1} $ respectively, $ Delta_{S^n}, Delta_{mathbb{R}^{n+1}} $ are Laplace operators on $ S^n $ and $ mathbb{R}^{n+1} $ respectively.
Hint: Use Euler's homogeneous function theorem $ langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle=mF(z) $.
The question above comes from my Riemannian geometry textbook. Can someone give me a hint about how to deal with $ nabla_{S^n}f $ ? I can't find any direct relation between $ nabla_{S^n}f $ and $ nabla_{mathbb{R}^{n+1}}F $. Though we can use local coordinates to expand $ nabla_{S^n}f $ and compute directly, I am still looking forward to a more elegant way to do this.
differential-geometry riemannian-geometry
differential-geometry riemannian-geometry
asked Nov 21 at 13:23
Philip
1,050315
1,050315
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
Assume we have a Riemannian manifold $(M,g)$ and a submanifold $N subseteq M$. Denote by $h$ the induced Riemannian metric on $N$ (the pullback of $g$ under the inclusion map $i colon N hookrightarrow M$). Given a smooth function $F colon M rightarrow mathbb{R}$, we can consider $f = F|_{N}$ which is a smooth function on $N$. Given $p in N$, what is the relation between $(nabla_M F)(p)$ and $(nabla_N f)(p)$?
Denote by $P colon T_pM rightarrow T_p N$ the orthogonal projection onto $N$. Then $(nabla_N f)(p) = P((nabla_M F)(p))$ because
$$ df|_p(v) = d(F circ i)|_p(v) = dF|_p(di|_p(v)) = left< (nabla_M F)(p), di|_p(v) right>_g = left< di|_p left( P((nabla_M F)(p)) right), di|_p(v) right>_g = left< P((nabla_M F)(p)), v right>_h $$
for all $v in T_pN$.
In your case, $M = mathbb{R}^{n+1}$ with the standard Euclidean metric and $N = S^n$ has codimension one. In addition, given $p in S^n$, we have the orthogonal direct sum decomposition
$$ T_p(M) = T_p(S^{n}) oplus operatorname{span}_{mathbb{R}} { p } $$
where we think of $p$ both as a point in $mathbb{R}^{n+1}$ and a tangent vector at $T_p(mathbb{R}^{n+1})$. Hence,
$$ P(v) = v - left<v, p right>p $$
and so
$$ (nabla_{S^n} f)(p) = (nabla_{mathbb{R}^{n+1}} F)(p) - left< (nabla_{mathbb{R}^{n+1}} F)(p), p right> p, \
| (nabla_{mathbb{R}^{n+1}} F)(p) |^2 = | (nabla_{S^n} f)(p) |^2 + left| left< nabla_{mathbb{R}^{n+1}} F)(p), p right> right|^2 = | (nabla_{S^n} f)(p) |^2 + m^2 |f(p)|^2.$$
This handles the first part. I'll leave the second part to you.
add a comment |
up vote
0
down vote
Thanks levap for the nice answer, here is what I did based on the hint given by levap:
$(1)$ Seeing that $ langle nabla_{S^n}f, X rangle=X(f) $ where $ Xin mathfrak{X}(S^n) $ by the definition of gradient. Now we play the trick that $ X(f)=operatorname{d}f(X)=operatorname{d}(Fcirc i)(X) $ where $ i $ is the inclusion map $ i: S^nhookrightarrow mathbb{R}^{n+1} $. And
$$ operatorname{d}(Fcirc i)(X)=operatorname{d}(F)circoperatorname{d}(i)(X)=operatorname{d}F(tilde{X})=tilde{X}(F)=langle nabla_{mathbb{R}^{n+1}}F, tilde{X} rangle=langle (nabla_{mathbb{R}^{n+1}}F)^{T}, Xrangle $$
where $ tilde{X}=X $ on $ S^n $.
Hence we have $ nabla_{S^n}f=(nabla_{mathbb{R}^{n+1}}F)^{T} $. Therefore, $$|nabla_{mathbb{R}^{n+1}}F|^2=|nabla_{S^n}f|^2+|(nabla_{mathbb{R}^{n+1}}F)^{perp}|^2=|nabla_{S^n}f|^2+langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle^2=|nabla_{S^n}f|^2+m^2F^2(z) $$ where $ zin S^n $
which is the same as $$ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 .$$
$(2)$ We have
begin{align*} Delta_{mathbb{R}^{n+1}}F&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)\
&=operatorname{div}left((nabla_{mathbb{R}^{n+1}}F)^{T}+(nabla_{mathbb{R}^{n+1}}F)^{perp}right)\
&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
&=Delta_{S^n}f+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
&=Delta_{S^n}f+operatorname{div}(langle nabla_{mathbb{R}^{n+1}}F,z rangle z)\
&=Delta_{S^n}f+langle nabla_{mathbb{R}^{n+1}}F,z rangleoperatorname{div}(z)+z(langle nabla_{mathbb{R}^{n+1}}F, z rangle )\
&=Delta_{S^n}f+mfoperatorname{div}(z)+z(mF(z))\
&=Delta_{S^n}f+mfn+mz(F(z))\
&=Delta_{S^n}f+mnf+mlangle nabla_{mathbb{R}^{n+1}}F, z rangle\
&=Delta_{S^n}f+mnf+mmf .
end{align*}
Hence $$ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-mmf-mnf .$$
Edit:
To be perfectly clear, we need to prove the fact that $ operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}=Delta_{S^n}f=operatorname{div}(nabla_{S^n}f) $. If we pick local orthogonal coordinates $ { E_i }_{i=1}^{n+1} $ at $ zinmathbb{R}^{n+1} $ such that $ E_{n+1}=z $ and $ { E_i }_{i=1}^n $ is naturally local orthogonal coordinates at $ z $ restricted to the unit sphere $ S^n $. Since $(nabla_{mathbb{R}^{n+1}}F)^{T} $ is perpendicular to $ z $, then by the definition of divergence,
begin{align*} operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}-operatorname{div}(nabla_{S^n}f)&=sum_{i=1}^{n+1}langle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_i rangle-sum_{i=1}^nlangle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_irangle \
&=langle nabla_{E_{n+1}}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_{n+1}rangle\
&=0 .
end{align*}
Another note for $ operatorname{div}(z)=0 $. Since in Euclidean space $ mathbb{R}^{n+1} $, $ z=(x_1, x_2,..., x_n, sqrt{1-sum_{i=1}^nx_i^2}) $ and $ operatorname{div}(z)=sum_{i=1}^{n}frac{partial x_i}{partial x_i}+frac{partial sqrt{1-sum_{i=1}^nx_i^2}}{partial x_{n+1}}=sum_{i=1}^n1+0=n. $
1
I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
– levap
Nov 22 at 16:03
Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
– Philip
Nov 23 at 0:10
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Assume we have a Riemannian manifold $(M,g)$ and a submanifold $N subseteq M$. Denote by $h$ the induced Riemannian metric on $N$ (the pullback of $g$ under the inclusion map $i colon N hookrightarrow M$). Given a smooth function $F colon M rightarrow mathbb{R}$, we can consider $f = F|_{N}$ which is a smooth function on $N$. Given $p in N$, what is the relation between $(nabla_M F)(p)$ and $(nabla_N f)(p)$?
Denote by $P colon T_pM rightarrow T_p N$ the orthogonal projection onto $N$. Then $(nabla_N f)(p) = P((nabla_M F)(p))$ because
$$ df|_p(v) = d(F circ i)|_p(v) = dF|_p(di|_p(v)) = left< (nabla_M F)(p), di|_p(v) right>_g = left< di|_p left( P((nabla_M F)(p)) right), di|_p(v) right>_g = left< P((nabla_M F)(p)), v right>_h $$
for all $v in T_pN$.
In your case, $M = mathbb{R}^{n+1}$ with the standard Euclidean metric and $N = S^n$ has codimension one. In addition, given $p in S^n$, we have the orthogonal direct sum decomposition
$$ T_p(M) = T_p(S^{n}) oplus operatorname{span}_{mathbb{R}} { p } $$
where we think of $p$ both as a point in $mathbb{R}^{n+1}$ and a tangent vector at $T_p(mathbb{R}^{n+1})$. Hence,
$$ P(v) = v - left<v, p right>p $$
and so
$$ (nabla_{S^n} f)(p) = (nabla_{mathbb{R}^{n+1}} F)(p) - left< (nabla_{mathbb{R}^{n+1}} F)(p), p right> p, \
| (nabla_{mathbb{R}^{n+1}} F)(p) |^2 = | (nabla_{S^n} f)(p) |^2 + left| left< nabla_{mathbb{R}^{n+1}} F)(p), p right> right|^2 = | (nabla_{S^n} f)(p) |^2 + m^2 |f(p)|^2.$$
This handles the first part. I'll leave the second part to you.
add a comment |
up vote
1
down vote
accepted
Assume we have a Riemannian manifold $(M,g)$ and a submanifold $N subseteq M$. Denote by $h$ the induced Riemannian metric on $N$ (the pullback of $g$ under the inclusion map $i colon N hookrightarrow M$). Given a smooth function $F colon M rightarrow mathbb{R}$, we can consider $f = F|_{N}$ which is a smooth function on $N$. Given $p in N$, what is the relation between $(nabla_M F)(p)$ and $(nabla_N f)(p)$?
Denote by $P colon T_pM rightarrow T_p N$ the orthogonal projection onto $N$. Then $(nabla_N f)(p) = P((nabla_M F)(p))$ because
$$ df|_p(v) = d(F circ i)|_p(v) = dF|_p(di|_p(v)) = left< (nabla_M F)(p), di|_p(v) right>_g = left< di|_p left( P((nabla_M F)(p)) right), di|_p(v) right>_g = left< P((nabla_M F)(p)), v right>_h $$
for all $v in T_pN$.
In your case, $M = mathbb{R}^{n+1}$ with the standard Euclidean metric and $N = S^n$ has codimension one. In addition, given $p in S^n$, we have the orthogonal direct sum decomposition
$$ T_p(M) = T_p(S^{n}) oplus operatorname{span}_{mathbb{R}} { p } $$
where we think of $p$ both as a point in $mathbb{R}^{n+1}$ and a tangent vector at $T_p(mathbb{R}^{n+1})$. Hence,
$$ P(v) = v - left<v, p right>p $$
and so
$$ (nabla_{S^n} f)(p) = (nabla_{mathbb{R}^{n+1}} F)(p) - left< (nabla_{mathbb{R}^{n+1}} F)(p), p right> p, \
| (nabla_{mathbb{R}^{n+1}} F)(p) |^2 = | (nabla_{S^n} f)(p) |^2 + left| left< nabla_{mathbb{R}^{n+1}} F)(p), p right> right|^2 = | (nabla_{S^n} f)(p) |^2 + m^2 |f(p)|^2.$$
This handles the first part. I'll leave the second part to you.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Assume we have a Riemannian manifold $(M,g)$ and a submanifold $N subseteq M$. Denote by $h$ the induced Riemannian metric on $N$ (the pullback of $g$ under the inclusion map $i colon N hookrightarrow M$). Given a smooth function $F colon M rightarrow mathbb{R}$, we can consider $f = F|_{N}$ which is a smooth function on $N$. Given $p in N$, what is the relation between $(nabla_M F)(p)$ and $(nabla_N f)(p)$?
Denote by $P colon T_pM rightarrow T_p N$ the orthogonal projection onto $N$. Then $(nabla_N f)(p) = P((nabla_M F)(p))$ because
$$ df|_p(v) = d(F circ i)|_p(v) = dF|_p(di|_p(v)) = left< (nabla_M F)(p), di|_p(v) right>_g = left< di|_p left( P((nabla_M F)(p)) right), di|_p(v) right>_g = left< P((nabla_M F)(p)), v right>_h $$
for all $v in T_pN$.
In your case, $M = mathbb{R}^{n+1}$ with the standard Euclidean metric and $N = S^n$ has codimension one. In addition, given $p in S^n$, we have the orthogonal direct sum decomposition
$$ T_p(M) = T_p(S^{n}) oplus operatorname{span}_{mathbb{R}} { p } $$
where we think of $p$ both as a point in $mathbb{R}^{n+1}$ and a tangent vector at $T_p(mathbb{R}^{n+1})$. Hence,
$$ P(v) = v - left<v, p right>p $$
and so
$$ (nabla_{S^n} f)(p) = (nabla_{mathbb{R}^{n+1}} F)(p) - left< (nabla_{mathbb{R}^{n+1}} F)(p), p right> p, \
| (nabla_{mathbb{R}^{n+1}} F)(p) |^2 = | (nabla_{S^n} f)(p) |^2 + left| left< nabla_{mathbb{R}^{n+1}} F)(p), p right> right|^2 = | (nabla_{S^n} f)(p) |^2 + m^2 |f(p)|^2.$$
This handles the first part. I'll leave the second part to you.
Assume we have a Riemannian manifold $(M,g)$ and a submanifold $N subseteq M$. Denote by $h$ the induced Riemannian metric on $N$ (the pullback of $g$ under the inclusion map $i colon N hookrightarrow M$). Given a smooth function $F colon M rightarrow mathbb{R}$, we can consider $f = F|_{N}$ which is a smooth function on $N$. Given $p in N$, what is the relation between $(nabla_M F)(p)$ and $(nabla_N f)(p)$?
Denote by $P colon T_pM rightarrow T_p N$ the orthogonal projection onto $N$. Then $(nabla_N f)(p) = P((nabla_M F)(p))$ because
$$ df|_p(v) = d(F circ i)|_p(v) = dF|_p(di|_p(v)) = left< (nabla_M F)(p), di|_p(v) right>_g = left< di|_p left( P((nabla_M F)(p)) right), di|_p(v) right>_g = left< P((nabla_M F)(p)), v right>_h $$
for all $v in T_pN$.
In your case, $M = mathbb{R}^{n+1}$ with the standard Euclidean metric and $N = S^n$ has codimension one. In addition, given $p in S^n$, we have the orthogonal direct sum decomposition
$$ T_p(M) = T_p(S^{n}) oplus operatorname{span}_{mathbb{R}} { p } $$
where we think of $p$ both as a point in $mathbb{R}^{n+1}$ and a tangent vector at $T_p(mathbb{R}^{n+1})$. Hence,
$$ P(v) = v - left<v, p right>p $$
and so
$$ (nabla_{S^n} f)(p) = (nabla_{mathbb{R}^{n+1}} F)(p) - left< (nabla_{mathbb{R}^{n+1}} F)(p), p right> p, \
| (nabla_{mathbb{R}^{n+1}} F)(p) |^2 = | (nabla_{S^n} f)(p) |^2 + left| left< nabla_{mathbb{R}^{n+1}} F)(p), p right> right|^2 = | (nabla_{S^n} f)(p) |^2 + m^2 |f(p)|^2.$$
This handles the first part. I'll leave the second part to you.
answered Nov 21 at 15:22
levap
46.7k23273
46.7k23273
add a comment |
add a comment |
up vote
0
down vote
Thanks levap for the nice answer, here is what I did based on the hint given by levap:
$(1)$ Seeing that $ langle nabla_{S^n}f, X rangle=X(f) $ where $ Xin mathfrak{X}(S^n) $ by the definition of gradient. Now we play the trick that $ X(f)=operatorname{d}f(X)=operatorname{d}(Fcirc i)(X) $ where $ i $ is the inclusion map $ i: S^nhookrightarrow mathbb{R}^{n+1} $. And
$$ operatorname{d}(Fcirc i)(X)=operatorname{d}(F)circoperatorname{d}(i)(X)=operatorname{d}F(tilde{X})=tilde{X}(F)=langle nabla_{mathbb{R}^{n+1}}F, tilde{X} rangle=langle (nabla_{mathbb{R}^{n+1}}F)^{T}, Xrangle $$
where $ tilde{X}=X $ on $ S^n $.
Hence we have $ nabla_{S^n}f=(nabla_{mathbb{R}^{n+1}}F)^{T} $. Therefore, $$|nabla_{mathbb{R}^{n+1}}F|^2=|nabla_{S^n}f|^2+|(nabla_{mathbb{R}^{n+1}}F)^{perp}|^2=|nabla_{S^n}f|^2+langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle^2=|nabla_{S^n}f|^2+m^2F^2(z) $$ where $ zin S^n $
which is the same as $$ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 .$$
$(2)$ We have
begin{align*} Delta_{mathbb{R}^{n+1}}F&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)\
&=operatorname{div}left((nabla_{mathbb{R}^{n+1}}F)^{T}+(nabla_{mathbb{R}^{n+1}}F)^{perp}right)\
&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
&=Delta_{S^n}f+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
&=Delta_{S^n}f+operatorname{div}(langle nabla_{mathbb{R}^{n+1}}F,z rangle z)\
&=Delta_{S^n}f+langle nabla_{mathbb{R}^{n+1}}F,z rangleoperatorname{div}(z)+z(langle nabla_{mathbb{R}^{n+1}}F, z rangle )\
&=Delta_{S^n}f+mfoperatorname{div}(z)+z(mF(z))\
&=Delta_{S^n}f+mfn+mz(F(z))\
&=Delta_{S^n}f+mnf+mlangle nabla_{mathbb{R}^{n+1}}F, z rangle\
&=Delta_{S^n}f+mnf+mmf .
end{align*}
Hence $$ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-mmf-mnf .$$
Edit:
To be perfectly clear, we need to prove the fact that $ operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}=Delta_{S^n}f=operatorname{div}(nabla_{S^n}f) $. If we pick local orthogonal coordinates $ { E_i }_{i=1}^{n+1} $ at $ zinmathbb{R}^{n+1} $ such that $ E_{n+1}=z $ and $ { E_i }_{i=1}^n $ is naturally local orthogonal coordinates at $ z $ restricted to the unit sphere $ S^n $. Since $(nabla_{mathbb{R}^{n+1}}F)^{T} $ is perpendicular to $ z $, then by the definition of divergence,
begin{align*} operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}-operatorname{div}(nabla_{S^n}f)&=sum_{i=1}^{n+1}langle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_i rangle-sum_{i=1}^nlangle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_irangle \
&=langle nabla_{E_{n+1}}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_{n+1}rangle\
&=0 .
end{align*}
Another note for $ operatorname{div}(z)=0 $. Since in Euclidean space $ mathbb{R}^{n+1} $, $ z=(x_1, x_2,..., x_n, sqrt{1-sum_{i=1}^nx_i^2}) $ and $ operatorname{div}(z)=sum_{i=1}^{n}frac{partial x_i}{partial x_i}+frac{partial sqrt{1-sum_{i=1}^nx_i^2}}{partial x_{n+1}}=sum_{i=1}^n1+0=n. $
1
I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
– levap
Nov 22 at 16:03
Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
– Philip
Nov 23 at 0:10
add a comment |
up vote
0
down vote
Thanks levap for the nice answer, here is what I did based on the hint given by levap:
$(1)$ Seeing that $ langle nabla_{S^n}f, X rangle=X(f) $ where $ Xin mathfrak{X}(S^n) $ by the definition of gradient. Now we play the trick that $ X(f)=operatorname{d}f(X)=operatorname{d}(Fcirc i)(X) $ where $ i $ is the inclusion map $ i: S^nhookrightarrow mathbb{R}^{n+1} $. And
$$ operatorname{d}(Fcirc i)(X)=operatorname{d}(F)circoperatorname{d}(i)(X)=operatorname{d}F(tilde{X})=tilde{X}(F)=langle nabla_{mathbb{R}^{n+1}}F, tilde{X} rangle=langle (nabla_{mathbb{R}^{n+1}}F)^{T}, Xrangle $$
where $ tilde{X}=X $ on $ S^n $.
Hence we have $ nabla_{S^n}f=(nabla_{mathbb{R}^{n+1}}F)^{T} $. Therefore, $$|nabla_{mathbb{R}^{n+1}}F|^2=|nabla_{S^n}f|^2+|(nabla_{mathbb{R}^{n+1}}F)^{perp}|^2=|nabla_{S^n}f|^2+langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle^2=|nabla_{S^n}f|^2+m^2F^2(z) $$ where $ zin S^n $
which is the same as $$ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 .$$
$(2)$ We have
begin{align*} Delta_{mathbb{R}^{n+1}}F&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)\
&=operatorname{div}left((nabla_{mathbb{R}^{n+1}}F)^{T}+(nabla_{mathbb{R}^{n+1}}F)^{perp}right)\
&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
&=Delta_{S^n}f+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
&=Delta_{S^n}f+operatorname{div}(langle nabla_{mathbb{R}^{n+1}}F,z rangle z)\
&=Delta_{S^n}f+langle nabla_{mathbb{R}^{n+1}}F,z rangleoperatorname{div}(z)+z(langle nabla_{mathbb{R}^{n+1}}F, z rangle )\
&=Delta_{S^n}f+mfoperatorname{div}(z)+z(mF(z))\
&=Delta_{S^n}f+mfn+mz(F(z))\
&=Delta_{S^n}f+mnf+mlangle nabla_{mathbb{R}^{n+1}}F, z rangle\
&=Delta_{S^n}f+mnf+mmf .
end{align*}
Hence $$ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-mmf-mnf .$$
Edit:
To be perfectly clear, we need to prove the fact that $ operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}=Delta_{S^n}f=operatorname{div}(nabla_{S^n}f) $. If we pick local orthogonal coordinates $ { E_i }_{i=1}^{n+1} $ at $ zinmathbb{R}^{n+1} $ such that $ E_{n+1}=z $ and $ { E_i }_{i=1}^n $ is naturally local orthogonal coordinates at $ z $ restricted to the unit sphere $ S^n $. Since $(nabla_{mathbb{R}^{n+1}}F)^{T} $ is perpendicular to $ z $, then by the definition of divergence,
begin{align*} operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}-operatorname{div}(nabla_{S^n}f)&=sum_{i=1}^{n+1}langle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_i rangle-sum_{i=1}^nlangle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_irangle \
&=langle nabla_{E_{n+1}}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_{n+1}rangle\
&=0 .
end{align*}
Another note for $ operatorname{div}(z)=0 $. Since in Euclidean space $ mathbb{R}^{n+1} $, $ z=(x_1, x_2,..., x_n, sqrt{1-sum_{i=1}^nx_i^2}) $ and $ operatorname{div}(z)=sum_{i=1}^{n}frac{partial x_i}{partial x_i}+frac{partial sqrt{1-sum_{i=1}^nx_i^2}}{partial x_{n+1}}=sum_{i=1}^n1+0=n. $
1
I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
– levap
Nov 22 at 16:03
Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
– Philip
Nov 23 at 0:10
add a comment |
up vote
0
down vote
up vote
0
down vote
Thanks levap for the nice answer, here is what I did based on the hint given by levap:
$(1)$ Seeing that $ langle nabla_{S^n}f, X rangle=X(f) $ where $ Xin mathfrak{X}(S^n) $ by the definition of gradient. Now we play the trick that $ X(f)=operatorname{d}f(X)=operatorname{d}(Fcirc i)(X) $ where $ i $ is the inclusion map $ i: S^nhookrightarrow mathbb{R}^{n+1} $. And
$$ operatorname{d}(Fcirc i)(X)=operatorname{d}(F)circoperatorname{d}(i)(X)=operatorname{d}F(tilde{X})=tilde{X}(F)=langle nabla_{mathbb{R}^{n+1}}F, tilde{X} rangle=langle (nabla_{mathbb{R}^{n+1}}F)^{T}, Xrangle $$
where $ tilde{X}=X $ on $ S^n $.
Hence we have $ nabla_{S^n}f=(nabla_{mathbb{R}^{n+1}}F)^{T} $. Therefore, $$|nabla_{mathbb{R}^{n+1}}F|^2=|nabla_{S^n}f|^2+|(nabla_{mathbb{R}^{n+1}}F)^{perp}|^2=|nabla_{S^n}f|^2+langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle^2=|nabla_{S^n}f|^2+m^2F^2(z) $$ where $ zin S^n $
which is the same as $$ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 .$$
$(2)$ We have
begin{align*} Delta_{mathbb{R}^{n+1}}F&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)\
&=operatorname{div}left((nabla_{mathbb{R}^{n+1}}F)^{T}+(nabla_{mathbb{R}^{n+1}}F)^{perp}right)\
&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
&=Delta_{S^n}f+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
&=Delta_{S^n}f+operatorname{div}(langle nabla_{mathbb{R}^{n+1}}F,z rangle z)\
&=Delta_{S^n}f+langle nabla_{mathbb{R}^{n+1}}F,z rangleoperatorname{div}(z)+z(langle nabla_{mathbb{R}^{n+1}}F, z rangle )\
&=Delta_{S^n}f+mfoperatorname{div}(z)+z(mF(z))\
&=Delta_{S^n}f+mfn+mz(F(z))\
&=Delta_{S^n}f+mnf+mlangle nabla_{mathbb{R}^{n+1}}F, z rangle\
&=Delta_{S^n}f+mnf+mmf .
end{align*}
Hence $$ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-mmf-mnf .$$
Edit:
To be perfectly clear, we need to prove the fact that $ operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}=Delta_{S^n}f=operatorname{div}(nabla_{S^n}f) $. If we pick local orthogonal coordinates $ { E_i }_{i=1}^{n+1} $ at $ zinmathbb{R}^{n+1} $ such that $ E_{n+1}=z $ and $ { E_i }_{i=1}^n $ is naturally local orthogonal coordinates at $ z $ restricted to the unit sphere $ S^n $. Since $(nabla_{mathbb{R}^{n+1}}F)^{T} $ is perpendicular to $ z $, then by the definition of divergence,
begin{align*} operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}-operatorname{div}(nabla_{S^n}f)&=sum_{i=1}^{n+1}langle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_i rangle-sum_{i=1}^nlangle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_irangle \
&=langle nabla_{E_{n+1}}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_{n+1}rangle\
&=0 .
end{align*}
Another note for $ operatorname{div}(z)=0 $. Since in Euclidean space $ mathbb{R}^{n+1} $, $ z=(x_1, x_2,..., x_n, sqrt{1-sum_{i=1}^nx_i^2}) $ and $ operatorname{div}(z)=sum_{i=1}^{n}frac{partial x_i}{partial x_i}+frac{partial sqrt{1-sum_{i=1}^nx_i^2}}{partial x_{n+1}}=sum_{i=1}^n1+0=n. $
Thanks levap for the nice answer, here is what I did based on the hint given by levap:
$(1)$ Seeing that $ langle nabla_{S^n}f, X rangle=X(f) $ where $ Xin mathfrak{X}(S^n) $ by the definition of gradient. Now we play the trick that $ X(f)=operatorname{d}f(X)=operatorname{d}(Fcirc i)(X) $ where $ i $ is the inclusion map $ i: S^nhookrightarrow mathbb{R}^{n+1} $. And
$$ operatorname{d}(Fcirc i)(X)=operatorname{d}(F)circoperatorname{d}(i)(X)=operatorname{d}F(tilde{X})=tilde{X}(F)=langle nabla_{mathbb{R}^{n+1}}F, tilde{X} rangle=langle (nabla_{mathbb{R}^{n+1}}F)^{T}, Xrangle $$
where $ tilde{X}=X $ on $ S^n $.
Hence we have $ nabla_{S^n}f=(nabla_{mathbb{R}^{n+1}}F)^{T} $. Therefore, $$|nabla_{mathbb{R}^{n+1}}F|^2=|nabla_{S^n}f|^2+|(nabla_{mathbb{R}^{n+1}}F)^{perp}|^2=|nabla_{S^n}f|^2+langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle^2=|nabla_{S^n}f|^2+m^2F^2(z) $$ where $ zin S^n $
which is the same as $$ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 .$$
$(2)$ We have
begin{align*} Delta_{mathbb{R}^{n+1}}F&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)\
&=operatorname{div}left((nabla_{mathbb{R}^{n+1}}F)^{T}+(nabla_{mathbb{R}^{n+1}}F)^{perp}right)\
&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
&=Delta_{S^n}f+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
&=Delta_{S^n}f+operatorname{div}(langle nabla_{mathbb{R}^{n+1}}F,z rangle z)\
&=Delta_{S^n}f+langle nabla_{mathbb{R}^{n+1}}F,z rangleoperatorname{div}(z)+z(langle nabla_{mathbb{R}^{n+1}}F, z rangle )\
&=Delta_{S^n}f+mfoperatorname{div}(z)+z(mF(z))\
&=Delta_{S^n}f+mfn+mz(F(z))\
&=Delta_{S^n}f+mnf+mlangle nabla_{mathbb{R}^{n+1}}F, z rangle\
&=Delta_{S^n}f+mnf+mmf .
end{align*}
Hence $$ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-mmf-mnf .$$
Edit:
To be perfectly clear, we need to prove the fact that $ operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}=Delta_{S^n}f=operatorname{div}(nabla_{S^n}f) $. If we pick local orthogonal coordinates $ { E_i }_{i=1}^{n+1} $ at $ zinmathbb{R}^{n+1} $ such that $ E_{n+1}=z $ and $ { E_i }_{i=1}^n $ is naturally local orthogonal coordinates at $ z $ restricted to the unit sphere $ S^n $. Since $(nabla_{mathbb{R}^{n+1}}F)^{T} $ is perpendicular to $ z $, then by the definition of divergence,
begin{align*} operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}-operatorname{div}(nabla_{S^n}f)&=sum_{i=1}^{n+1}langle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_i rangle-sum_{i=1}^nlangle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_irangle \
&=langle nabla_{E_{n+1}}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_{n+1}rangle\
&=0 .
end{align*}
Another note for $ operatorname{div}(z)=0 $. Since in Euclidean space $ mathbb{R}^{n+1} $, $ z=(x_1, x_2,..., x_n, sqrt{1-sum_{i=1}^nx_i^2}) $ and $ operatorname{div}(z)=sum_{i=1}^{n}frac{partial x_i}{partial x_i}+frac{partial sqrt{1-sum_{i=1}^nx_i^2}}{partial x_{n+1}}=sum_{i=1}^n1+0=n. $
edited Nov 23 at 2:25
answered Nov 22 at 10:45
Philip
1,050315
1,050315
1
I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
– levap
Nov 22 at 16:03
Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
– Philip
Nov 23 at 0:10
add a comment |
1
I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
– levap
Nov 22 at 16:03
Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
– Philip
Nov 23 at 0:10
1
1
I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
– levap
Nov 22 at 16:03
I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
– levap
Nov 22 at 16:03
Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
– Philip
Nov 23 at 0:10
Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
– Philip
Nov 23 at 0:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007724%2fhomogeneous-polynomial-on-unit-sphere%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown