Why is...
$begingroup$
Problem A5 in the 1985 Putnam Competition: Let $I_m=int_0^{2pi}cos(x)cos(2x)cdotscos(mx)dx$. For which integers $m$, $1leq mleq10$, do we have $I_mneq0$?
The solution rewrites $cos(x)=frac{e^{ikx}+e^{-ikx}}{2}$. It then says that $$I_m=int_0^{2pi}prod_{k=1}^m{biggl(frac{e^{ikx}+e^{-ikx}}{2}biggr)}=2^{-m}sum_{epsilon_{k}=pm1}int_0^{2pi}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
Where the sum ranges over the $2^m$ $m$-tuples $(epsilon_1,ldots,epsilon_m)$ with $epsilon_k=pm1$ for every $k$.
My question is, how do you make sense of the last step? Why is this true:
$$prod_{k=1}^m{(e^{ikx}+e^{-ikx})}=sum_{epsilon_{k}=pm1}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
products
$endgroup$
add a comment |
$begingroup$
Problem A5 in the 1985 Putnam Competition: Let $I_m=int_0^{2pi}cos(x)cos(2x)cdotscos(mx)dx$. For which integers $m$, $1leq mleq10$, do we have $I_mneq0$?
The solution rewrites $cos(x)=frac{e^{ikx}+e^{-ikx}}{2}$. It then says that $$I_m=int_0^{2pi}prod_{k=1}^m{biggl(frac{e^{ikx}+e^{-ikx}}{2}biggr)}=2^{-m}sum_{epsilon_{k}=pm1}int_0^{2pi}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
Where the sum ranges over the $2^m$ $m$-tuples $(epsilon_1,ldots,epsilon_m)$ with $epsilon_k=pm1$ for every $k$.
My question is, how do you make sense of the last step? Why is this true:
$$prod_{k=1}^m{(e^{ikx}+e^{-ikx})}=sum_{epsilon_{k}=pm1}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
products
$endgroup$
$begingroup$
mathworld.wolfram.com/WernerFormulas.html
$endgroup$
– lab bhattacharjee
Dec 4 '18 at 11:45
add a comment |
$begingroup$
Problem A5 in the 1985 Putnam Competition: Let $I_m=int_0^{2pi}cos(x)cos(2x)cdotscos(mx)dx$. For which integers $m$, $1leq mleq10$, do we have $I_mneq0$?
The solution rewrites $cos(x)=frac{e^{ikx}+e^{-ikx}}{2}$. It then says that $$I_m=int_0^{2pi}prod_{k=1}^m{biggl(frac{e^{ikx}+e^{-ikx}}{2}biggr)}=2^{-m}sum_{epsilon_{k}=pm1}int_0^{2pi}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
Where the sum ranges over the $2^m$ $m$-tuples $(epsilon_1,ldots,epsilon_m)$ with $epsilon_k=pm1$ for every $k$.
My question is, how do you make sense of the last step? Why is this true:
$$prod_{k=1}^m{(e^{ikx}+e^{-ikx})}=sum_{epsilon_{k}=pm1}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
products
$endgroup$
Problem A5 in the 1985 Putnam Competition: Let $I_m=int_0^{2pi}cos(x)cos(2x)cdotscos(mx)dx$. For which integers $m$, $1leq mleq10$, do we have $I_mneq0$?
The solution rewrites $cos(x)=frac{e^{ikx}+e^{-ikx}}{2}$. It then says that $$I_m=int_0^{2pi}prod_{k=1}^m{biggl(frac{e^{ikx}+e^{-ikx}}{2}biggr)}=2^{-m}sum_{epsilon_{k}=pm1}int_0^{2pi}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
Where the sum ranges over the $2^m$ $m$-tuples $(epsilon_1,ldots,epsilon_m)$ with $epsilon_k=pm1$ for every $k$.
My question is, how do you make sense of the last step? Why is this true:
$$prod_{k=1}^m{(e^{ikx}+e^{-ikx})}=sum_{epsilon_{k}=pm1}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
products
products
asked Dec 4 '18 at 11:27
David KDavid K
1007
1007
$begingroup$
mathworld.wolfram.com/WernerFormulas.html
$endgroup$
– lab bhattacharjee
Dec 4 '18 at 11:45
add a comment |
$begingroup$
mathworld.wolfram.com/WernerFormulas.html
$endgroup$
– lab bhattacharjee
Dec 4 '18 at 11:45
$begingroup$
mathworld.wolfram.com/WernerFormulas.html
$endgroup$
– lab bhattacharjee
Dec 4 '18 at 11:45
$begingroup$
mathworld.wolfram.com/WernerFormulas.html
$endgroup$
– lab bhattacharjee
Dec 4 '18 at 11:45
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We obtain
begin{align*}
color{blue}{prod_{k=1}^m}&color{blue}{left(e^{ikx}+e^{-ikx}right)}tag{1}\
&=prod_{k=1}^mleft(sum_{varepsilon_{k}=pm 1}e^{ivarepsilon_{k}kx}right)\
&=left(sum_{varepsilon_{1}=pm 1}e^{ivarepsilon_1 x}right)left(sum_{varepsilon_{2}=pm 1}e^{ivarepsilon_22 x}right)
cdots left(sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_mm x}right)\
&=sum_{varepsilon_{1}=pm 1}sum_{varepsilon_{2}=pm 1}cdots
sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&,,color{blue}{=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ileft(varepsilon_1 +2varepsilon_2+cdots +m varepsilon_{m}right)x}}tag{2}
end{align*}
and the claim follows.
The product (1) consists of $m$ factors $e^{ikx}+e^{-ikx}$ where $1leq kleq m$. From each factor we select either $e^{ikx}$ or $e^{-ikx}$ giving a total of $2^m$ summands. These $2^m$ summands are explicitly stated in (2).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025448%2fwhy-is-prod-k-1meikxe-ikx-sum-epsilon-k-pm1ei-epsilon%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We obtain
begin{align*}
color{blue}{prod_{k=1}^m}&color{blue}{left(e^{ikx}+e^{-ikx}right)}tag{1}\
&=prod_{k=1}^mleft(sum_{varepsilon_{k}=pm 1}e^{ivarepsilon_{k}kx}right)\
&=left(sum_{varepsilon_{1}=pm 1}e^{ivarepsilon_1 x}right)left(sum_{varepsilon_{2}=pm 1}e^{ivarepsilon_22 x}right)
cdots left(sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_mm x}right)\
&=sum_{varepsilon_{1}=pm 1}sum_{varepsilon_{2}=pm 1}cdots
sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&,,color{blue}{=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ileft(varepsilon_1 +2varepsilon_2+cdots +m varepsilon_{m}right)x}}tag{2}
end{align*}
and the claim follows.
The product (1) consists of $m$ factors $e^{ikx}+e^{-ikx}$ where $1leq kleq m$. From each factor we select either $e^{ikx}$ or $e^{-ikx}$ giving a total of $2^m$ summands. These $2^m$ summands are explicitly stated in (2).
$endgroup$
add a comment |
$begingroup$
We obtain
begin{align*}
color{blue}{prod_{k=1}^m}&color{blue}{left(e^{ikx}+e^{-ikx}right)}tag{1}\
&=prod_{k=1}^mleft(sum_{varepsilon_{k}=pm 1}e^{ivarepsilon_{k}kx}right)\
&=left(sum_{varepsilon_{1}=pm 1}e^{ivarepsilon_1 x}right)left(sum_{varepsilon_{2}=pm 1}e^{ivarepsilon_22 x}right)
cdots left(sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_mm x}right)\
&=sum_{varepsilon_{1}=pm 1}sum_{varepsilon_{2}=pm 1}cdots
sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&,,color{blue}{=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ileft(varepsilon_1 +2varepsilon_2+cdots +m varepsilon_{m}right)x}}tag{2}
end{align*}
and the claim follows.
The product (1) consists of $m$ factors $e^{ikx}+e^{-ikx}$ where $1leq kleq m$. From each factor we select either $e^{ikx}$ or $e^{-ikx}$ giving a total of $2^m$ summands. These $2^m$ summands are explicitly stated in (2).
$endgroup$
add a comment |
$begingroup$
We obtain
begin{align*}
color{blue}{prod_{k=1}^m}&color{blue}{left(e^{ikx}+e^{-ikx}right)}tag{1}\
&=prod_{k=1}^mleft(sum_{varepsilon_{k}=pm 1}e^{ivarepsilon_{k}kx}right)\
&=left(sum_{varepsilon_{1}=pm 1}e^{ivarepsilon_1 x}right)left(sum_{varepsilon_{2}=pm 1}e^{ivarepsilon_22 x}right)
cdots left(sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_mm x}right)\
&=sum_{varepsilon_{1}=pm 1}sum_{varepsilon_{2}=pm 1}cdots
sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&,,color{blue}{=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ileft(varepsilon_1 +2varepsilon_2+cdots +m varepsilon_{m}right)x}}tag{2}
end{align*}
and the claim follows.
The product (1) consists of $m$ factors $e^{ikx}+e^{-ikx}$ where $1leq kleq m$. From each factor we select either $e^{ikx}$ or $e^{-ikx}$ giving a total of $2^m$ summands. These $2^m$ summands are explicitly stated in (2).
$endgroup$
We obtain
begin{align*}
color{blue}{prod_{k=1}^m}&color{blue}{left(e^{ikx}+e^{-ikx}right)}tag{1}\
&=prod_{k=1}^mleft(sum_{varepsilon_{k}=pm 1}e^{ivarepsilon_{k}kx}right)\
&=left(sum_{varepsilon_{1}=pm 1}e^{ivarepsilon_1 x}right)left(sum_{varepsilon_{2}=pm 1}e^{ivarepsilon_22 x}right)
cdots left(sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_mm x}right)\
&=sum_{varepsilon_{1}=pm 1}sum_{varepsilon_{2}=pm 1}cdots
sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&,,color{blue}{=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ileft(varepsilon_1 +2varepsilon_2+cdots +m varepsilon_{m}right)x}}tag{2}
end{align*}
and the claim follows.
The product (1) consists of $m$ factors $e^{ikx}+e^{-ikx}$ where $1leq kleq m$. From each factor we select either $e^{ikx}$ or $e^{-ikx}$ giving a total of $2^m$ summands. These $2^m$ summands are explicitly stated in (2).
edited Dec 9 '18 at 12:05
answered Dec 6 '18 at 23:07
Markus ScheuerMarkus Scheuer
60.8k455145
60.8k455145
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025448%2fwhy-is-prod-k-1meikxe-ikx-sum-epsilon-k-pm1ei-epsilon%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
mathworld.wolfram.com/WernerFormulas.html
$endgroup$
– lab bhattacharjee
Dec 4 '18 at 11:45