How can I evaluate this logarithmic expression?












0












$begingroup$


I am solving a problem about recursion trees and I applied the geometric series sum formula and I have the following expression:
$$
left(frac{6}{7}right)^{log_{frac{7}{5}}(N) + 1}
$$



How can I write this in a simpler form in terms of N?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Welcome to MSE! The expression you’ve given is ambiguous. Please check this link to learn how to format mathematical expressions.
    $endgroup$
    – KM101
    Jan 1 at 15:30












  • $begingroup$
    @KM101 Thank you for referring me to the link! I will make sure to use that information in my future questions.
    $endgroup$
    – Badger
    Jan 1 at 16:23
















0












$begingroup$


I am solving a problem about recursion trees and I applied the geometric series sum formula and I have the following expression:
$$
left(frac{6}{7}right)^{log_{frac{7}{5}}(N) + 1}
$$



How can I write this in a simpler form in terms of N?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Welcome to MSE! The expression you’ve given is ambiguous. Please check this link to learn how to format mathematical expressions.
    $endgroup$
    – KM101
    Jan 1 at 15:30












  • $begingroup$
    @KM101 Thank you for referring me to the link! I will make sure to use that information in my future questions.
    $endgroup$
    – Badger
    Jan 1 at 16:23














0












0








0





$begingroup$


I am solving a problem about recursion trees and I applied the geometric series sum formula and I have the following expression:
$$
left(frac{6}{7}right)^{log_{frac{7}{5}}(N) + 1}
$$



How can I write this in a simpler form in terms of N?










share|cite|improve this question











$endgroup$




I am solving a problem about recursion trees and I applied the geometric series sum formula and I have the following expression:
$$
left(frac{6}{7}right)^{log_{frac{7}{5}}(N) + 1}
$$



How can I write this in a simpler form in terms of N?







logarithms






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 1 at 16:15









Viktor Glombik

1,0121527




1,0121527










asked Jan 1 at 15:26









BadgerBadger

81




81












  • $begingroup$
    Welcome to MSE! The expression you’ve given is ambiguous. Please check this link to learn how to format mathematical expressions.
    $endgroup$
    – KM101
    Jan 1 at 15:30












  • $begingroup$
    @KM101 Thank you for referring me to the link! I will make sure to use that information in my future questions.
    $endgroup$
    – Badger
    Jan 1 at 16:23


















  • $begingroup$
    Welcome to MSE! The expression you’ve given is ambiguous. Please check this link to learn how to format mathematical expressions.
    $endgroup$
    – KM101
    Jan 1 at 15:30












  • $begingroup$
    @KM101 Thank you for referring me to the link! I will make sure to use that information in my future questions.
    $endgroup$
    – Badger
    Jan 1 at 16:23
















$begingroup$
Welcome to MSE! The expression you’ve given is ambiguous. Please check this link to learn how to format mathematical expressions.
$endgroup$
– KM101
Jan 1 at 15:30






$begingroup$
Welcome to MSE! The expression you’ve given is ambiguous. Please check this link to learn how to format mathematical expressions.
$endgroup$
– KM101
Jan 1 at 15:30














$begingroup$
@KM101 Thank you for referring me to the link! I will make sure to use that information in my future questions.
$endgroup$
– Badger
Jan 1 at 16:23




$begingroup$
@KM101 Thank you for referring me to the link! I will make sure to use that information in my future questions.
$endgroup$
– Badger
Jan 1 at 16:23










2 Answers
2






active

oldest

votes


















1












$begingroup$

Well, if I understand right you have:



$$x:=left(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)+1}tag1$$



Using the rule:



$$text{a}^{text{b}+text{c}}=text{a}^text{b}cdottext{a}^text{c}tag2$$



We can rewrite equation $left(1right)$ as follows:



$$x=left(frac{6}{7}right)^1cdotleft(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)}=frac{6}{7}cdotleft(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)}tag3$$



Using the rule:



$$log_text{a}left(text{b}right)=frac{lnleft(text{b}right)}{lnleft(text{a}right)}tag4$$



We can rewrite equation $left(3right)$ as follows:



$$x=frac{6}{7}cdotleft(frac{6}{7}right)^frac{lnleft(text{n}right)}{lnleft(frac{7}{5}right)}tag5$$



Using the following rules:




  • $$text{a}^frac{text{b}}{text{c}}=left(text{a}^frac{1}{text{c}}right)^text{b}tag6$$

  • $$lnleft(frac{text{a}}{text{b}}right)=lnleft(text{a}right)-lnleft(text{b}right)tag7$$


We can rewrite equation $left(5right)$ as follows:



$$x=frac{6}{7}cdotleft(left(frac{6}{7}right)^frac{1}{lnleft(7right)-lnleft(5right)}right)^{lnleft(text{n}right)}tag8$$



Now, using an approximation we can write:




  • $$frac{6}{7}approx0.85714tag9$$

  • $$left(frac{6}{7}right)^frac{1}{lnleft(7right)-lnleft(5right)}approx0.63246tag{10}$$


So:



$$xapprox0.85714cdot0.63246^{lnleft(text{n}right)}tag{11}$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Thank you for the detailed answer! Really helped me out with understanding this.
    $endgroup$
    – Badger
    Jan 1 at 16:25






  • 1




    $begingroup$
    @Badger You're welcome, I'm glad that I could help. And for now #HappyNewYear :)
    $endgroup$
    – Jan
    Jan 1 at 16:32



















1












$begingroup$


  1. Rewrite the log in base $frac{6}{7}$

  2. Use $a^{bc} = a^{b}a^{c}$ to be able to simplify the log.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Do you mean $$left(frac{6}{7}right)^{log_{7/5}{N}+1}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 1 at 15:36












  • $begingroup$
    Yes - that’s what seemed like the correct interpretation of what the OP wrote.
    $endgroup$
    – user458276
    Jan 1 at 15:43











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058577%2fhow-can-i-evaluate-this-logarithmic-expression%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Well, if I understand right you have:



$$x:=left(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)+1}tag1$$



Using the rule:



$$text{a}^{text{b}+text{c}}=text{a}^text{b}cdottext{a}^text{c}tag2$$



We can rewrite equation $left(1right)$ as follows:



$$x=left(frac{6}{7}right)^1cdotleft(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)}=frac{6}{7}cdotleft(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)}tag3$$



Using the rule:



$$log_text{a}left(text{b}right)=frac{lnleft(text{b}right)}{lnleft(text{a}right)}tag4$$



We can rewrite equation $left(3right)$ as follows:



$$x=frac{6}{7}cdotleft(frac{6}{7}right)^frac{lnleft(text{n}right)}{lnleft(frac{7}{5}right)}tag5$$



Using the following rules:




  • $$text{a}^frac{text{b}}{text{c}}=left(text{a}^frac{1}{text{c}}right)^text{b}tag6$$

  • $$lnleft(frac{text{a}}{text{b}}right)=lnleft(text{a}right)-lnleft(text{b}right)tag7$$


We can rewrite equation $left(5right)$ as follows:



$$x=frac{6}{7}cdotleft(left(frac{6}{7}right)^frac{1}{lnleft(7right)-lnleft(5right)}right)^{lnleft(text{n}right)}tag8$$



Now, using an approximation we can write:




  • $$frac{6}{7}approx0.85714tag9$$

  • $$left(frac{6}{7}right)^frac{1}{lnleft(7right)-lnleft(5right)}approx0.63246tag{10}$$


So:



$$xapprox0.85714cdot0.63246^{lnleft(text{n}right)}tag{11}$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Thank you for the detailed answer! Really helped me out with understanding this.
    $endgroup$
    – Badger
    Jan 1 at 16:25






  • 1




    $begingroup$
    @Badger You're welcome, I'm glad that I could help. And for now #HappyNewYear :)
    $endgroup$
    – Jan
    Jan 1 at 16:32
















1












$begingroup$

Well, if I understand right you have:



$$x:=left(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)+1}tag1$$



Using the rule:



$$text{a}^{text{b}+text{c}}=text{a}^text{b}cdottext{a}^text{c}tag2$$



We can rewrite equation $left(1right)$ as follows:



$$x=left(frac{6}{7}right)^1cdotleft(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)}=frac{6}{7}cdotleft(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)}tag3$$



Using the rule:



$$log_text{a}left(text{b}right)=frac{lnleft(text{b}right)}{lnleft(text{a}right)}tag4$$



We can rewrite equation $left(3right)$ as follows:



$$x=frac{6}{7}cdotleft(frac{6}{7}right)^frac{lnleft(text{n}right)}{lnleft(frac{7}{5}right)}tag5$$



Using the following rules:




  • $$text{a}^frac{text{b}}{text{c}}=left(text{a}^frac{1}{text{c}}right)^text{b}tag6$$

  • $$lnleft(frac{text{a}}{text{b}}right)=lnleft(text{a}right)-lnleft(text{b}right)tag7$$


We can rewrite equation $left(5right)$ as follows:



$$x=frac{6}{7}cdotleft(left(frac{6}{7}right)^frac{1}{lnleft(7right)-lnleft(5right)}right)^{lnleft(text{n}right)}tag8$$



Now, using an approximation we can write:




  • $$frac{6}{7}approx0.85714tag9$$

  • $$left(frac{6}{7}right)^frac{1}{lnleft(7right)-lnleft(5right)}approx0.63246tag{10}$$


So:



$$xapprox0.85714cdot0.63246^{lnleft(text{n}right)}tag{11}$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Thank you for the detailed answer! Really helped me out with understanding this.
    $endgroup$
    – Badger
    Jan 1 at 16:25






  • 1




    $begingroup$
    @Badger You're welcome, I'm glad that I could help. And for now #HappyNewYear :)
    $endgroup$
    – Jan
    Jan 1 at 16:32














1












1








1





$begingroup$

Well, if I understand right you have:



$$x:=left(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)+1}tag1$$



Using the rule:



$$text{a}^{text{b}+text{c}}=text{a}^text{b}cdottext{a}^text{c}tag2$$



We can rewrite equation $left(1right)$ as follows:



$$x=left(frac{6}{7}right)^1cdotleft(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)}=frac{6}{7}cdotleft(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)}tag3$$



Using the rule:



$$log_text{a}left(text{b}right)=frac{lnleft(text{b}right)}{lnleft(text{a}right)}tag4$$



We can rewrite equation $left(3right)$ as follows:



$$x=frac{6}{7}cdotleft(frac{6}{7}right)^frac{lnleft(text{n}right)}{lnleft(frac{7}{5}right)}tag5$$



Using the following rules:




  • $$text{a}^frac{text{b}}{text{c}}=left(text{a}^frac{1}{text{c}}right)^text{b}tag6$$

  • $$lnleft(frac{text{a}}{text{b}}right)=lnleft(text{a}right)-lnleft(text{b}right)tag7$$


We can rewrite equation $left(5right)$ as follows:



$$x=frac{6}{7}cdotleft(left(frac{6}{7}right)^frac{1}{lnleft(7right)-lnleft(5right)}right)^{lnleft(text{n}right)}tag8$$



Now, using an approximation we can write:




  • $$frac{6}{7}approx0.85714tag9$$

  • $$left(frac{6}{7}right)^frac{1}{lnleft(7right)-lnleft(5right)}approx0.63246tag{10}$$


So:



$$xapprox0.85714cdot0.63246^{lnleft(text{n}right)}tag{11}$$






share|cite|improve this answer









$endgroup$



Well, if I understand right you have:



$$x:=left(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)+1}tag1$$



Using the rule:



$$text{a}^{text{b}+text{c}}=text{a}^text{b}cdottext{a}^text{c}tag2$$



We can rewrite equation $left(1right)$ as follows:



$$x=left(frac{6}{7}right)^1cdotleft(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)}=frac{6}{7}cdotleft(frac{6}{7}right)^{log_{frac{7}{5}}left(text{n}right)}tag3$$



Using the rule:



$$log_text{a}left(text{b}right)=frac{lnleft(text{b}right)}{lnleft(text{a}right)}tag4$$



We can rewrite equation $left(3right)$ as follows:



$$x=frac{6}{7}cdotleft(frac{6}{7}right)^frac{lnleft(text{n}right)}{lnleft(frac{7}{5}right)}tag5$$



Using the following rules:




  • $$text{a}^frac{text{b}}{text{c}}=left(text{a}^frac{1}{text{c}}right)^text{b}tag6$$

  • $$lnleft(frac{text{a}}{text{b}}right)=lnleft(text{a}right)-lnleft(text{b}right)tag7$$


We can rewrite equation $left(5right)$ as follows:



$$x=frac{6}{7}cdotleft(left(frac{6}{7}right)^frac{1}{lnleft(7right)-lnleft(5right)}right)^{lnleft(text{n}right)}tag8$$



Now, using an approximation we can write:




  • $$frac{6}{7}approx0.85714tag9$$

  • $$left(frac{6}{7}right)^frac{1}{lnleft(7right)-lnleft(5right)}approx0.63246tag{10}$$


So:



$$xapprox0.85714cdot0.63246^{lnleft(text{n}right)}tag{11}$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 1 at 15:57









JanJan

21.9k31240




21.9k31240








  • 1




    $begingroup$
    Thank you for the detailed answer! Really helped me out with understanding this.
    $endgroup$
    – Badger
    Jan 1 at 16:25






  • 1




    $begingroup$
    @Badger You're welcome, I'm glad that I could help. And for now #HappyNewYear :)
    $endgroup$
    – Jan
    Jan 1 at 16:32














  • 1




    $begingroup$
    Thank you for the detailed answer! Really helped me out with understanding this.
    $endgroup$
    – Badger
    Jan 1 at 16:25






  • 1




    $begingroup$
    @Badger You're welcome, I'm glad that I could help. And for now #HappyNewYear :)
    $endgroup$
    – Jan
    Jan 1 at 16:32








1




1




$begingroup$
Thank you for the detailed answer! Really helped me out with understanding this.
$endgroup$
– Badger
Jan 1 at 16:25




$begingroup$
Thank you for the detailed answer! Really helped me out with understanding this.
$endgroup$
– Badger
Jan 1 at 16:25




1




1




$begingroup$
@Badger You're welcome, I'm glad that I could help. And for now #HappyNewYear :)
$endgroup$
– Jan
Jan 1 at 16:32




$begingroup$
@Badger You're welcome, I'm glad that I could help. And for now #HappyNewYear :)
$endgroup$
– Jan
Jan 1 at 16:32











1












$begingroup$


  1. Rewrite the log in base $frac{6}{7}$

  2. Use $a^{bc} = a^{b}a^{c}$ to be able to simplify the log.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Do you mean $$left(frac{6}{7}right)^{log_{7/5}{N}+1}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 1 at 15:36












  • $begingroup$
    Yes - that’s what seemed like the correct interpretation of what the OP wrote.
    $endgroup$
    – user458276
    Jan 1 at 15:43
















1












$begingroup$


  1. Rewrite the log in base $frac{6}{7}$

  2. Use $a^{bc} = a^{b}a^{c}$ to be able to simplify the log.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Do you mean $$left(frac{6}{7}right)^{log_{7/5}{N}+1}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 1 at 15:36












  • $begingroup$
    Yes - that’s what seemed like the correct interpretation of what the OP wrote.
    $endgroup$
    – user458276
    Jan 1 at 15:43














1












1








1





$begingroup$


  1. Rewrite the log in base $frac{6}{7}$

  2. Use $a^{bc} = a^{b}a^{c}$ to be able to simplify the log.






share|cite|improve this answer









$endgroup$




  1. Rewrite the log in base $frac{6}{7}$

  2. Use $a^{bc} = a^{b}a^{c}$ to be able to simplify the log.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 1 at 15:30









user458276user458276

654211




654211












  • $begingroup$
    Do you mean $$left(frac{6}{7}right)^{log_{7/5}{N}+1}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 1 at 15:36












  • $begingroup$
    Yes - that’s what seemed like the correct interpretation of what the OP wrote.
    $endgroup$
    – user458276
    Jan 1 at 15:43


















  • $begingroup$
    Do you mean $$left(frac{6}{7}right)^{log_{7/5}{N}+1}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 1 at 15:36












  • $begingroup$
    Yes - that’s what seemed like the correct interpretation of what the OP wrote.
    $endgroup$
    – user458276
    Jan 1 at 15:43
















$begingroup$
Do you mean $$left(frac{6}{7}right)^{log_{7/5}{N}+1}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 1 at 15:36






$begingroup$
Do you mean $$left(frac{6}{7}right)^{log_{7/5}{N}+1}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 1 at 15:36














$begingroup$
Yes - that’s what seemed like the correct interpretation of what the OP wrote.
$endgroup$
– user458276
Jan 1 at 15:43




$begingroup$
Yes - that’s what seemed like the correct interpretation of what the OP wrote.
$endgroup$
– user458276
Jan 1 at 15:43


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058577%2fhow-can-i-evaluate-this-logarithmic-expression%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei