Question about Anti Symmetricity












0












$begingroup$


If there are no relations on the set R where (a,b) ∈ R and (b,a) ∈ R is it anti symmetrical because you can't evaluate if a = b or is it not anti-symmetrical because you can't evaluate if a = b?



ex)

R = {(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,3),(4,4)}

I don't see a relation where (a,b) and (b,a) ∈ R so I can't evaluate if a = b










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    If there are no relations on the set R where (a,b) ∈ R and (b,a) ∈ R is it anti symmetrical because you can't evaluate if a = b or is it not anti-symmetrical because you can't evaluate if a = b?



    ex)

    R = {(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,3),(4,4)}

    I don't see a relation where (a,b) and (b,a) ∈ R so I can't evaluate if a = b










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      If there are no relations on the set R where (a,b) ∈ R and (b,a) ∈ R is it anti symmetrical because you can't evaluate if a = b or is it not anti-symmetrical because you can't evaluate if a = b?



      ex)

      R = {(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,3),(4,4)}

      I don't see a relation where (a,b) and (b,a) ∈ R so I can't evaluate if a = b










      share|cite|improve this question









      $endgroup$




      If there are no relations on the set R where (a,b) ∈ R and (b,a) ∈ R is it anti symmetrical because you can't evaluate if a = b or is it not anti-symmetrical because you can't evaluate if a = b?



      ex)

      R = {(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,3),(4,4)}

      I don't see a relation where (a,b) and (b,a) ∈ R so I can't evaluate if a = b







      discrete-mathematics






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Oct 24 '14 at 4:43









      John DoeJohn Doe

      1




      1






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          This relation is antisymmetric. If there is no $a,b in R$ such that $aneq b$ and where both $(a,b) in R$ and $(b,a) in R$, then $R$ is antisymmetric.



          For this particular relation, the only four times we have both $(a,b) in R$ and $(b,a) in R$ are where $a=b$, namely:



          begin{eqnarray*}
          a=1, ; b=1 && qquad text{since $(1,1) in R$} \
          a=2, ; b=2 && qquad text{since $(2,2) in R$} \
          a=3, ; b=3 && qquad text{since $(3,3) in R$} \
          a=4, ; b=4 && qquad text{since $(4,4) in R$}. \
          end{eqnarray*}






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f988634%2fquestion-about-anti-symmetricity%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            This relation is antisymmetric. If there is no $a,b in R$ such that $aneq b$ and where both $(a,b) in R$ and $(b,a) in R$, then $R$ is antisymmetric.



            For this particular relation, the only four times we have both $(a,b) in R$ and $(b,a) in R$ are where $a=b$, namely:



            begin{eqnarray*}
            a=1, ; b=1 && qquad text{since $(1,1) in R$} \
            a=2, ; b=2 && qquad text{since $(2,2) in R$} \
            a=3, ; b=3 && qquad text{since $(3,3) in R$} \
            a=4, ; b=4 && qquad text{since $(4,4) in R$}. \
            end{eqnarray*}






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              This relation is antisymmetric. If there is no $a,b in R$ such that $aneq b$ and where both $(a,b) in R$ and $(b,a) in R$, then $R$ is antisymmetric.



              For this particular relation, the only four times we have both $(a,b) in R$ and $(b,a) in R$ are where $a=b$, namely:



              begin{eqnarray*}
              a=1, ; b=1 && qquad text{since $(1,1) in R$} \
              a=2, ; b=2 && qquad text{since $(2,2) in R$} \
              a=3, ; b=3 && qquad text{since $(3,3) in R$} \
              a=4, ; b=4 && qquad text{since $(4,4) in R$}. \
              end{eqnarray*}






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                This relation is antisymmetric. If there is no $a,b in R$ such that $aneq b$ and where both $(a,b) in R$ and $(b,a) in R$, then $R$ is antisymmetric.



                For this particular relation, the only four times we have both $(a,b) in R$ and $(b,a) in R$ are where $a=b$, namely:



                begin{eqnarray*}
                a=1, ; b=1 && qquad text{since $(1,1) in R$} \
                a=2, ; b=2 && qquad text{since $(2,2) in R$} \
                a=3, ; b=3 && qquad text{since $(3,3) in R$} \
                a=4, ; b=4 && qquad text{since $(4,4) in R$}. \
                end{eqnarray*}






                share|cite|improve this answer











                $endgroup$



                This relation is antisymmetric. If there is no $a,b in R$ such that $aneq b$ and where both $(a,b) in R$ and $(b,a) in R$, then $R$ is antisymmetric.



                For this particular relation, the only four times we have both $(a,b) in R$ and $(b,a) in R$ are where $a=b$, namely:



                begin{eqnarray*}
                a=1, ; b=1 && qquad text{since $(1,1) in R$} \
                a=2, ; b=2 && qquad text{since $(2,2) in R$} \
                a=3, ; b=3 && qquad text{since $(3,3) in R$} \
                a=4, ; b=4 && qquad text{since $(4,4) in R$}. \
                end{eqnarray*}







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Oct 28 '14 at 8:49

























                answered Oct 27 '14 at 14:51









                Mick AMick A

                8,8252825




                8,8252825






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f988634%2fquestion-about-anti-symmetricity%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei