How can we factor $ q^4 + q^2 + 1$












1












$begingroup$


Alright, I met this example solved in a book, but I want to know how did they come up with the answer:



$$ (1+q^2+q^4) = (1+q^2+q)(1+q^2-q) $$



Can you also refer me some internet source where I can learn the rules of factoring. Thank you in advance.










share|cite|improve this question











$endgroup$












  • $begingroup$
    here's something you may want to check and enjoy. en.wikipedia.org/wiki/Factorization
    $endgroup$
    – user25406
    Nov 8 '16 at 20:20
















1












$begingroup$


Alright, I met this example solved in a book, but I want to know how did they come up with the answer:



$$ (1+q^2+q^4) = (1+q^2+q)(1+q^2-q) $$



Can you also refer me some internet source where I can learn the rules of factoring. Thank you in advance.










share|cite|improve this question











$endgroup$












  • $begingroup$
    here's something you may want to check and enjoy. en.wikipedia.org/wiki/Factorization
    $endgroup$
    – user25406
    Nov 8 '16 at 20:20














1












1








1





$begingroup$


Alright, I met this example solved in a book, but I want to know how did they come up with the answer:



$$ (1+q^2+q^4) = (1+q^2+q)(1+q^2-q) $$



Can you also refer me some internet source where I can learn the rules of factoring. Thank you in advance.










share|cite|improve this question











$endgroup$




Alright, I met this example solved in a book, but I want to know how did they come up with the answer:



$$ (1+q^2+q^4) = (1+q^2+q)(1+q^2-q) $$



Can you also refer me some internet source where I can learn the rules of factoring. Thank you in advance.







elementary-number-theory factoring






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 1 at 15:59









Bill Dubuque

211k29194648




211k29194648










asked Nov 8 '16 at 16:01









G. NickG. Nick

82




82












  • $begingroup$
    here's something you may want to check and enjoy. en.wikipedia.org/wiki/Factorization
    $endgroup$
    – user25406
    Nov 8 '16 at 20:20


















  • $begingroup$
    here's something you may want to check and enjoy. en.wikipedia.org/wiki/Factorization
    $endgroup$
    – user25406
    Nov 8 '16 at 20:20
















$begingroup$
here's something you may want to check and enjoy. en.wikipedia.org/wiki/Factorization
$endgroup$
– user25406
Nov 8 '16 at 20:20




$begingroup$
here's something you may want to check and enjoy. en.wikipedia.org/wiki/Factorization
$endgroup$
– user25406
Nov 8 '16 at 20:20










2 Answers
2






active

oldest

votes


















2












$begingroup$

Hint $ $ completing the square leads to a difference of squares, e.g.



$$begin{eqnarray}overbrace{q^4+1}^{rm incomplete large Box!!}!!! + q^2!&,=,&!! overbrace{(q^2+1)^2}^{rm complete the LargeBox !!!}!!!- color{#c00}{q}^2 text{so, factoring this} ittext{ difference of squares}\
&,=,& (q^2+1, -, color{#c00}{q}),(q^2+1+,color{#c00}{q})\
end{eqnarray}$$
Here is another common example



$$begin{eqnarray} n^4+4k^4 &,=,& overbrace{(n^2!+2k^2)^2}^{rm!!! complete the square!!!}!!!-!(color{#c00}{2nk})^2 text{so, factoring this} ittext{ difference of squares}\
&,=,& (n^2!+2k^2 -, color{#c00}{2nk}),(n^2!+2k^2+,color{#c00}{2nk})\
&,=,&(underbrace{(n-k)^2}_{rm!!!!!!!!!!! complete the square!!!!!!!!} + ,k^2) underbrace{((n+k)^2}_{rm!!!!!!!!!!! complete the square!!!!!!!!!!!!!!} +,k^2)\ end{eqnarray}$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    $$1+q^2+q^4=(1+q+q^2)(1+q^2-q)$$
    Notice how $1^2=1$ and $(q^2)^2=q^4$, so $(1+q^2)^2$ will get us a few terms already:
    $$(1+q^2)^2=1+q^4+2q^2$$
    Hence:
    $$1+q^2+q^4=(1+q^2)^2-q^2$$
    Which is the difference of two squares, something we know we can factor:
    $$1+q^2+q^4=(1+q^2)^2-q^2=((1+q^2)+q)((1+q^2)-q)=(1+q^2+q)(1+q^2-q)$$





    Some often used rules for factoring are:
    $$(a+b)^2=a^2+b^2+2ab$$
    $$(a-b)(a+b)=a^2-b^2$$
    $$(a-1)(1+a+a^2+...+a^n)=a^{n+1}-1$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2005303%2fhow-can-we-factor-q4-q2-1%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Hint $ $ completing the square leads to a difference of squares, e.g.



      $$begin{eqnarray}overbrace{q^4+1}^{rm incomplete large Box!!}!!! + q^2!&,=,&!! overbrace{(q^2+1)^2}^{rm complete the LargeBox !!!}!!!- color{#c00}{q}^2 text{so, factoring this} ittext{ difference of squares}\
      &,=,& (q^2+1, -, color{#c00}{q}),(q^2+1+,color{#c00}{q})\
      end{eqnarray}$$
      Here is another common example



      $$begin{eqnarray} n^4+4k^4 &,=,& overbrace{(n^2!+2k^2)^2}^{rm!!! complete the square!!!}!!!-!(color{#c00}{2nk})^2 text{so, factoring this} ittext{ difference of squares}\
      &,=,& (n^2!+2k^2 -, color{#c00}{2nk}),(n^2!+2k^2+,color{#c00}{2nk})\
      &,=,&(underbrace{(n-k)^2}_{rm!!!!!!!!!!! complete the square!!!!!!!!} + ,k^2) underbrace{((n+k)^2}_{rm!!!!!!!!!!! complete the square!!!!!!!!!!!!!!} +,k^2)\ end{eqnarray}$$






      share|cite|improve this answer











      $endgroup$


















        2












        $begingroup$

        Hint $ $ completing the square leads to a difference of squares, e.g.



        $$begin{eqnarray}overbrace{q^4+1}^{rm incomplete large Box!!}!!! + q^2!&,=,&!! overbrace{(q^2+1)^2}^{rm complete the LargeBox !!!}!!!- color{#c00}{q}^2 text{so, factoring this} ittext{ difference of squares}\
        &,=,& (q^2+1, -, color{#c00}{q}),(q^2+1+,color{#c00}{q})\
        end{eqnarray}$$
        Here is another common example



        $$begin{eqnarray} n^4+4k^4 &,=,& overbrace{(n^2!+2k^2)^2}^{rm!!! complete the square!!!}!!!-!(color{#c00}{2nk})^2 text{so, factoring this} ittext{ difference of squares}\
        &,=,& (n^2!+2k^2 -, color{#c00}{2nk}),(n^2!+2k^2+,color{#c00}{2nk})\
        &,=,&(underbrace{(n-k)^2}_{rm!!!!!!!!!!! complete the square!!!!!!!!} + ,k^2) underbrace{((n+k)^2}_{rm!!!!!!!!!!! complete the square!!!!!!!!!!!!!!} +,k^2)\ end{eqnarray}$$






        share|cite|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          Hint $ $ completing the square leads to a difference of squares, e.g.



          $$begin{eqnarray}overbrace{q^4+1}^{rm incomplete large Box!!}!!! + q^2!&,=,&!! overbrace{(q^2+1)^2}^{rm complete the LargeBox !!!}!!!- color{#c00}{q}^2 text{so, factoring this} ittext{ difference of squares}\
          &,=,& (q^2+1, -, color{#c00}{q}),(q^2+1+,color{#c00}{q})\
          end{eqnarray}$$
          Here is another common example



          $$begin{eqnarray} n^4+4k^4 &,=,& overbrace{(n^2!+2k^2)^2}^{rm!!! complete the square!!!}!!!-!(color{#c00}{2nk})^2 text{so, factoring this} ittext{ difference of squares}\
          &,=,& (n^2!+2k^2 -, color{#c00}{2nk}),(n^2!+2k^2+,color{#c00}{2nk})\
          &,=,&(underbrace{(n-k)^2}_{rm!!!!!!!!!!! complete the square!!!!!!!!} + ,k^2) underbrace{((n+k)^2}_{rm!!!!!!!!!!! complete the square!!!!!!!!!!!!!!} +,k^2)\ end{eqnarray}$$






          share|cite|improve this answer











          $endgroup$



          Hint $ $ completing the square leads to a difference of squares, e.g.



          $$begin{eqnarray}overbrace{q^4+1}^{rm incomplete large Box!!}!!! + q^2!&,=,&!! overbrace{(q^2+1)^2}^{rm complete the LargeBox !!!}!!!- color{#c00}{q}^2 text{so, factoring this} ittext{ difference of squares}\
          &,=,& (q^2+1, -, color{#c00}{q}),(q^2+1+,color{#c00}{q})\
          end{eqnarray}$$
          Here is another common example



          $$begin{eqnarray} n^4+4k^4 &,=,& overbrace{(n^2!+2k^2)^2}^{rm!!! complete the square!!!}!!!-!(color{#c00}{2nk})^2 text{so, factoring this} ittext{ difference of squares}\
          &,=,& (n^2!+2k^2 -, color{#c00}{2nk}),(n^2!+2k^2+,color{#c00}{2nk})\
          &,=,&(underbrace{(n-k)^2}_{rm!!!!!!!!!!! complete the square!!!!!!!!} + ,k^2) underbrace{((n+k)^2}_{rm!!!!!!!!!!! complete the square!!!!!!!!!!!!!!} +,k^2)\ end{eqnarray}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 1 at 16:08

























          answered Nov 8 '16 at 16:05









          Bill DubuqueBill Dubuque

          211k29194648




          211k29194648























              1












              $begingroup$

              $$1+q^2+q^4=(1+q+q^2)(1+q^2-q)$$
              Notice how $1^2=1$ and $(q^2)^2=q^4$, so $(1+q^2)^2$ will get us a few terms already:
              $$(1+q^2)^2=1+q^4+2q^2$$
              Hence:
              $$1+q^2+q^4=(1+q^2)^2-q^2$$
              Which is the difference of two squares, something we know we can factor:
              $$1+q^2+q^4=(1+q^2)^2-q^2=((1+q^2)+q)((1+q^2)-q)=(1+q^2+q)(1+q^2-q)$$





              Some often used rules for factoring are:
              $$(a+b)^2=a^2+b^2+2ab$$
              $$(a-b)(a+b)=a^2-b^2$$
              $$(a-1)(1+a+a^2+...+a^n)=a^{n+1}-1$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                $$1+q^2+q^4=(1+q+q^2)(1+q^2-q)$$
                Notice how $1^2=1$ and $(q^2)^2=q^4$, so $(1+q^2)^2$ will get us a few terms already:
                $$(1+q^2)^2=1+q^4+2q^2$$
                Hence:
                $$1+q^2+q^4=(1+q^2)^2-q^2$$
                Which is the difference of two squares, something we know we can factor:
                $$1+q^2+q^4=(1+q^2)^2-q^2=((1+q^2)+q)((1+q^2)-q)=(1+q^2+q)(1+q^2-q)$$





                Some often used rules for factoring are:
                $$(a+b)^2=a^2+b^2+2ab$$
                $$(a-b)(a+b)=a^2-b^2$$
                $$(a-1)(1+a+a^2+...+a^n)=a^{n+1}-1$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  $$1+q^2+q^4=(1+q+q^2)(1+q^2-q)$$
                  Notice how $1^2=1$ and $(q^2)^2=q^4$, so $(1+q^2)^2$ will get us a few terms already:
                  $$(1+q^2)^2=1+q^4+2q^2$$
                  Hence:
                  $$1+q^2+q^4=(1+q^2)^2-q^2$$
                  Which is the difference of two squares, something we know we can factor:
                  $$1+q^2+q^4=(1+q^2)^2-q^2=((1+q^2)+q)((1+q^2)-q)=(1+q^2+q)(1+q^2-q)$$





                  Some often used rules for factoring are:
                  $$(a+b)^2=a^2+b^2+2ab$$
                  $$(a-b)(a+b)=a^2-b^2$$
                  $$(a-1)(1+a+a^2+...+a^n)=a^{n+1}-1$$






                  share|cite|improve this answer









                  $endgroup$



                  $$1+q^2+q^4=(1+q+q^2)(1+q^2-q)$$
                  Notice how $1^2=1$ and $(q^2)^2=q^4$, so $(1+q^2)^2$ will get us a few terms already:
                  $$(1+q^2)^2=1+q^4+2q^2$$
                  Hence:
                  $$1+q^2+q^4=(1+q^2)^2-q^2$$
                  Which is the difference of two squares, something we know we can factor:
                  $$1+q^2+q^4=(1+q^2)^2-q^2=((1+q^2)+q)((1+q^2)-q)=(1+q^2+q)(1+q^2-q)$$





                  Some often used rules for factoring are:
                  $$(a+b)^2=a^2+b^2+2ab$$
                  $$(a-b)(a+b)=a^2-b^2$$
                  $$(a-1)(1+a+a^2+...+a^n)=a^{n+1}-1$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 8 '16 at 16:05









                  MastremMastrem

                  3,79711230




                  3,79711230






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2005303%2fhow-can-we-factor-q4-q2-1%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Ellipse (mathématiques)

                      Quarter-circle Tiles

                      Mont Emei