$partial(A)=cl(A)Longleftrightarrow int(A)=emptyset$
$begingroup$
Is it write to say:
begin{align}
int(A)=emptyset& Longleftrightarrow C_{E}(int(A))=E\
&Longleftrightarrow cl(A)cap C_{E}(int(A))=cl({A})cap E=cl({A})\
&Longleftrightarrow partial(A)= cl(A)
end{align}
If I start from $partial(A)=cl(A)$ I don't know how to get $int({A})=emptyset$??
general-topology
$endgroup$
|
show 3 more comments
$begingroup$
Is it write to say:
begin{align}
int(A)=emptyset& Longleftrightarrow C_{E}(int(A))=E\
&Longleftrightarrow cl(A)cap C_{E}(int(A))=cl({A})cap E=cl({A})\
&Longleftrightarrow partial(A)= cl(A)
end{align}
If I start from $partial(A)=cl(A)$ I don't know how to get $int({A})=emptyset$??
general-topology
$endgroup$
$begingroup$
What is $adh(A)$?
$endgroup$
– Thomas Shelby
Jan 1 at 16:16
$begingroup$
the adherence of A,
$endgroup$
– Vrouvrou
Jan 1 at 16:17
$begingroup$
Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
$endgroup$
– DreaDk
Jan 1 at 16:18
$begingroup$
@DreaDk $Fr= partial$
$endgroup$
– Vrouvrou
Jan 1 at 16:24
$begingroup$
I don't understand why -2 ????
$endgroup$
– Vrouvrou
Jan 1 at 16:38
|
show 3 more comments
$begingroup$
Is it write to say:
begin{align}
int(A)=emptyset& Longleftrightarrow C_{E}(int(A))=E\
&Longleftrightarrow cl(A)cap C_{E}(int(A))=cl({A})cap E=cl({A})\
&Longleftrightarrow partial(A)= cl(A)
end{align}
If I start from $partial(A)=cl(A)$ I don't know how to get $int({A})=emptyset$??
general-topology
$endgroup$
Is it write to say:
begin{align}
int(A)=emptyset& Longleftrightarrow C_{E}(int(A))=E\
&Longleftrightarrow cl(A)cap C_{E}(int(A))=cl({A})cap E=cl({A})\
&Longleftrightarrow partial(A)= cl(A)
end{align}
If I start from $partial(A)=cl(A)$ I don't know how to get $int({A})=emptyset$??
general-topology
general-topology
edited Jan 1 at 16:39
Vrouvrou
asked Jan 1 at 16:08
VrouvrouVrouvrou
1,9221822
1,9221822
$begingroup$
What is $adh(A)$?
$endgroup$
– Thomas Shelby
Jan 1 at 16:16
$begingroup$
the adherence of A,
$endgroup$
– Vrouvrou
Jan 1 at 16:17
$begingroup$
Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
$endgroup$
– DreaDk
Jan 1 at 16:18
$begingroup$
@DreaDk $Fr= partial$
$endgroup$
– Vrouvrou
Jan 1 at 16:24
$begingroup$
I don't understand why -2 ????
$endgroup$
– Vrouvrou
Jan 1 at 16:38
|
show 3 more comments
$begingroup$
What is $adh(A)$?
$endgroup$
– Thomas Shelby
Jan 1 at 16:16
$begingroup$
the adherence of A,
$endgroup$
– Vrouvrou
Jan 1 at 16:17
$begingroup$
Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
$endgroup$
– DreaDk
Jan 1 at 16:18
$begingroup$
@DreaDk $Fr= partial$
$endgroup$
– Vrouvrou
Jan 1 at 16:24
$begingroup$
I don't understand why -2 ????
$endgroup$
– Vrouvrou
Jan 1 at 16:38
$begingroup$
What is $adh(A)$?
$endgroup$
– Thomas Shelby
Jan 1 at 16:16
$begingroup$
What is $adh(A)$?
$endgroup$
– Thomas Shelby
Jan 1 at 16:16
$begingroup$
the adherence of A,
$endgroup$
– Vrouvrou
Jan 1 at 16:17
$begingroup$
the adherence of A,
$endgroup$
– Vrouvrou
Jan 1 at 16:17
$begingroup$
Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
$endgroup$
– DreaDk
Jan 1 at 16:18
$begingroup$
Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
$endgroup$
– DreaDk
Jan 1 at 16:18
$begingroup$
@DreaDk $Fr= partial$
$endgroup$
– Vrouvrou
Jan 1 at 16:24
$begingroup$
@DreaDk $Fr= partial$
$endgroup$
– Vrouvrou
Jan 1 at 16:24
$begingroup$
I don't understand why -2 ????
$endgroup$
– Vrouvrou
Jan 1 at 16:38
$begingroup$
I don't understand why -2 ????
$endgroup$
– Vrouvrou
Jan 1 at 16:38
|
show 3 more comments
3 Answers
3
active
oldest
votes
$begingroup$
Note that $mbox{Fr}(A)=overline{A}setminus A^°$. Now, if $A^°=emptyset$, $mbox{Fr}(A)=overline{A}$ trivially. If, $mbox{Fr}(A)=overline{A}$, it means that $overline{A}cap mbox{int}(A)^c=overline{A}$, which is equivalent to, $overline{A}subset mbox{int}(A)^c$, i.e, $mbox{int}(A)^csubsetoverline{A}^c$, now intersect with $A$, and then $A^°=A^°cap Asubset overline{A}^ccap A=emptyset$ since $Asubsetoverline{A}$.
$endgroup$
add a comment |
$begingroup$
Another way to see this, $Fr(A)=adh(A)cap C_E(int(A))$ by definition, $Fr(A)=adh(A)$ implies that $int(A)subset adh(A)=C_E(int(A)$ this implies that $int(A)$ is empty since it is contained in its complementary space.
$endgroup$
add a comment |
$begingroup$
$partial A = overline{A} setminus A^circ$. (closure minus interior). Also $A^circ subseteq A subseteq overline{A}$.
From this it's immedediate that $partial A = overline{A}$ iff $A^circ = emptyset$.
As the OP asks left to right: suppose $x in A^circ$ existed. Then $x in overline{A}$ but $x notin partial A$, contradicting that $partial A = overline{A}$. So $A^circ = emptyset$; the reverse is just substituting in the formula for $partial A$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058609%2fpartiala-cla-longleftrightarrow-inta-emptyset%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $mbox{Fr}(A)=overline{A}setminus A^°$. Now, if $A^°=emptyset$, $mbox{Fr}(A)=overline{A}$ trivially. If, $mbox{Fr}(A)=overline{A}$, it means that $overline{A}cap mbox{int}(A)^c=overline{A}$, which is equivalent to, $overline{A}subset mbox{int}(A)^c$, i.e, $mbox{int}(A)^csubsetoverline{A}^c$, now intersect with $A$, and then $A^°=A^°cap Asubset overline{A}^ccap A=emptyset$ since $Asubsetoverline{A}$.
$endgroup$
add a comment |
$begingroup$
Note that $mbox{Fr}(A)=overline{A}setminus A^°$. Now, if $A^°=emptyset$, $mbox{Fr}(A)=overline{A}$ trivially. If, $mbox{Fr}(A)=overline{A}$, it means that $overline{A}cap mbox{int}(A)^c=overline{A}$, which is equivalent to, $overline{A}subset mbox{int}(A)^c$, i.e, $mbox{int}(A)^csubsetoverline{A}^c$, now intersect with $A$, and then $A^°=A^°cap Asubset overline{A}^ccap A=emptyset$ since $Asubsetoverline{A}$.
$endgroup$
add a comment |
$begingroup$
Note that $mbox{Fr}(A)=overline{A}setminus A^°$. Now, if $A^°=emptyset$, $mbox{Fr}(A)=overline{A}$ trivially. If, $mbox{Fr}(A)=overline{A}$, it means that $overline{A}cap mbox{int}(A)^c=overline{A}$, which is equivalent to, $overline{A}subset mbox{int}(A)^c$, i.e, $mbox{int}(A)^csubsetoverline{A}^c$, now intersect with $A$, and then $A^°=A^°cap Asubset overline{A}^ccap A=emptyset$ since $Asubsetoverline{A}$.
$endgroup$
Note that $mbox{Fr}(A)=overline{A}setminus A^°$. Now, if $A^°=emptyset$, $mbox{Fr}(A)=overline{A}$ trivially. If, $mbox{Fr}(A)=overline{A}$, it means that $overline{A}cap mbox{int}(A)^c=overline{A}$, which is equivalent to, $overline{A}subset mbox{int}(A)^c$, i.e, $mbox{int}(A)^csubsetoverline{A}^c$, now intersect with $A$, and then $A^°=A^°cap Asubset overline{A}^ccap A=emptyset$ since $Asubsetoverline{A}$.
answered Jan 1 at 16:18
José Alejandro Aburto AranedaJosé Alejandro Aburto Araneda
802110
802110
add a comment |
add a comment |
$begingroup$
Another way to see this, $Fr(A)=adh(A)cap C_E(int(A))$ by definition, $Fr(A)=adh(A)$ implies that $int(A)subset adh(A)=C_E(int(A)$ this implies that $int(A)$ is empty since it is contained in its complementary space.
$endgroup$
add a comment |
$begingroup$
Another way to see this, $Fr(A)=adh(A)cap C_E(int(A))$ by definition, $Fr(A)=adh(A)$ implies that $int(A)subset adh(A)=C_E(int(A)$ this implies that $int(A)$ is empty since it is contained in its complementary space.
$endgroup$
add a comment |
$begingroup$
Another way to see this, $Fr(A)=adh(A)cap C_E(int(A))$ by definition, $Fr(A)=adh(A)$ implies that $int(A)subset adh(A)=C_E(int(A)$ this implies that $int(A)$ is empty since it is contained in its complementary space.
$endgroup$
Another way to see this, $Fr(A)=adh(A)cap C_E(int(A))$ by definition, $Fr(A)=adh(A)$ implies that $int(A)subset adh(A)=C_E(int(A)$ this implies that $int(A)$ is empty since it is contained in its complementary space.
answered Jan 1 at 16:19
Tsemo AristideTsemo Aristide
58.8k11445
58.8k11445
add a comment |
add a comment |
$begingroup$
$partial A = overline{A} setminus A^circ$. (closure minus interior). Also $A^circ subseteq A subseteq overline{A}$.
From this it's immedediate that $partial A = overline{A}$ iff $A^circ = emptyset$.
As the OP asks left to right: suppose $x in A^circ$ existed. Then $x in overline{A}$ but $x notin partial A$, contradicting that $partial A = overline{A}$. So $A^circ = emptyset$; the reverse is just substituting in the formula for $partial A$.
$endgroup$
add a comment |
$begingroup$
$partial A = overline{A} setminus A^circ$. (closure minus interior). Also $A^circ subseteq A subseteq overline{A}$.
From this it's immedediate that $partial A = overline{A}$ iff $A^circ = emptyset$.
As the OP asks left to right: suppose $x in A^circ$ existed. Then $x in overline{A}$ but $x notin partial A$, contradicting that $partial A = overline{A}$. So $A^circ = emptyset$; the reverse is just substituting in the formula for $partial A$.
$endgroup$
add a comment |
$begingroup$
$partial A = overline{A} setminus A^circ$. (closure minus interior). Also $A^circ subseteq A subseteq overline{A}$.
From this it's immedediate that $partial A = overline{A}$ iff $A^circ = emptyset$.
As the OP asks left to right: suppose $x in A^circ$ existed. Then $x in overline{A}$ but $x notin partial A$, contradicting that $partial A = overline{A}$. So $A^circ = emptyset$; the reverse is just substituting in the formula for $partial A$.
$endgroup$
$partial A = overline{A} setminus A^circ$. (closure minus interior). Also $A^circ subseteq A subseteq overline{A}$.
From this it's immedediate that $partial A = overline{A}$ iff $A^circ = emptyset$.
As the OP asks left to right: suppose $x in A^circ$ existed. Then $x in overline{A}$ but $x notin partial A$, contradicting that $partial A = overline{A}$. So $A^circ = emptyset$; the reverse is just substituting in the formula for $partial A$.
answered Jan 1 at 22:59
Henno BrandsmaHenno Brandsma
111k348118
111k348118
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058609%2fpartiala-cla-longleftrightarrow-inta-emptyset%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is $adh(A)$?
$endgroup$
– Thomas Shelby
Jan 1 at 16:16
$begingroup$
the adherence of A,
$endgroup$
– Vrouvrou
Jan 1 at 16:17
$begingroup$
Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
$endgroup$
– DreaDk
Jan 1 at 16:18
$begingroup$
@DreaDk $Fr= partial$
$endgroup$
– Vrouvrou
Jan 1 at 16:24
$begingroup$
I don't understand why -2 ????
$endgroup$
– Vrouvrou
Jan 1 at 16:38