$partial(A)=cl(A)Longleftrightarrow int(A)=emptyset$












-2












$begingroup$


Is it write to say:



begin{align}
int(A)=emptyset& Longleftrightarrow C_{E}(int(A))=E\
&Longleftrightarrow cl(A)cap C_{E}(int(A))=cl({A})cap E=cl({A})\
&Longleftrightarrow partial(A)= cl(A)
end{align}



If I start from $partial(A)=cl(A)$ I don't know how to get $int({A})=emptyset$??










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is $adh(A)$?
    $endgroup$
    – Thomas Shelby
    Jan 1 at 16:16










  • $begingroup$
    the adherence of A,
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:17










  • $begingroup$
    Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
    $endgroup$
    – DreaDk
    Jan 1 at 16:18










  • $begingroup$
    @DreaDk $Fr= partial$
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:24










  • $begingroup$
    I don't understand why -2 ????
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:38
















-2












$begingroup$


Is it write to say:



begin{align}
int(A)=emptyset& Longleftrightarrow C_{E}(int(A))=E\
&Longleftrightarrow cl(A)cap C_{E}(int(A))=cl({A})cap E=cl({A})\
&Longleftrightarrow partial(A)= cl(A)
end{align}



If I start from $partial(A)=cl(A)$ I don't know how to get $int({A})=emptyset$??










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is $adh(A)$?
    $endgroup$
    – Thomas Shelby
    Jan 1 at 16:16










  • $begingroup$
    the adherence of A,
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:17










  • $begingroup$
    Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
    $endgroup$
    – DreaDk
    Jan 1 at 16:18










  • $begingroup$
    @DreaDk $Fr= partial$
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:24










  • $begingroup$
    I don't understand why -2 ????
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:38














-2












-2








-2





$begingroup$


Is it write to say:



begin{align}
int(A)=emptyset& Longleftrightarrow C_{E}(int(A))=E\
&Longleftrightarrow cl(A)cap C_{E}(int(A))=cl({A})cap E=cl({A})\
&Longleftrightarrow partial(A)= cl(A)
end{align}



If I start from $partial(A)=cl(A)$ I don't know how to get $int({A})=emptyset$??










share|cite|improve this question











$endgroup$




Is it write to say:



begin{align}
int(A)=emptyset& Longleftrightarrow C_{E}(int(A))=E\
&Longleftrightarrow cl(A)cap C_{E}(int(A))=cl({A})cap E=cl({A})\
&Longleftrightarrow partial(A)= cl(A)
end{align}



If I start from $partial(A)=cl(A)$ I don't know how to get $int({A})=emptyset$??







general-topology






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 1 at 16:39







Vrouvrou

















asked Jan 1 at 16:08









VrouvrouVrouvrou

1,9221822




1,9221822












  • $begingroup$
    What is $adh(A)$?
    $endgroup$
    – Thomas Shelby
    Jan 1 at 16:16










  • $begingroup$
    the adherence of A,
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:17










  • $begingroup$
    Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
    $endgroup$
    – DreaDk
    Jan 1 at 16:18










  • $begingroup$
    @DreaDk $Fr= partial$
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:24










  • $begingroup$
    I don't understand why -2 ????
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:38


















  • $begingroup$
    What is $adh(A)$?
    $endgroup$
    – Thomas Shelby
    Jan 1 at 16:16










  • $begingroup$
    the adherence of A,
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:17










  • $begingroup$
    Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
    $endgroup$
    – DreaDk
    Jan 1 at 16:18










  • $begingroup$
    @DreaDk $Fr= partial$
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:24










  • $begingroup$
    I don't understand why -2 ????
    $endgroup$
    – Vrouvrou
    Jan 1 at 16:38
















$begingroup$
What is $adh(A)$?
$endgroup$
– Thomas Shelby
Jan 1 at 16:16




$begingroup$
What is $adh(A)$?
$endgroup$
– Thomas Shelby
Jan 1 at 16:16












$begingroup$
the adherence of A,
$endgroup$
– Vrouvrou
Jan 1 at 16:17




$begingroup$
the adherence of A,
$endgroup$
– Vrouvrou
Jan 1 at 16:17












$begingroup$
Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
$endgroup$
– DreaDk
Jan 1 at 16:18




$begingroup$
Could you clarify your notation a little better? I think $adh(A)$ are the adherent points of the set $A$ (aka closure of set) but I have no idea what $Fr(A)$ is then.
$endgroup$
– DreaDk
Jan 1 at 16:18












$begingroup$
@DreaDk $Fr= partial$
$endgroup$
– Vrouvrou
Jan 1 at 16:24




$begingroup$
@DreaDk $Fr= partial$
$endgroup$
– Vrouvrou
Jan 1 at 16:24












$begingroup$
I don't understand why -2 ????
$endgroup$
– Vrouvrou
Jan 1 at 16:38




$begingroup$
I don't understand why -2 ????
$endgroup$
– Vrouvrou
Jan 1 at 16:38










3 Answers
3






active

oldest

votes


















0












$begingroup$

Note that $mbox{Fr}(A)=overline{A}setminus A^°$. Now, if $A^°=emptyset$, $mbox{Fr}(A)=overline{A}$ trivially. If, $mbox{Fr}(A)=overline{A}$, it means that $overline{A}cap mbox{int}(A)^c=overline{A}$, which is equivalent to, $overline{A}subset mbox{int}(A)^c$, i.e, $mbox{int}(A)^csubsetoverline{A}^c$, now intersect with $A$, and then $A^°=A^°cap Asubset overline{A}^ccap A=emptyset$ since $Asubsetoverline{A}$.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Another way to see this, $Fr(A)=adh(A)cap C_E(int(A))$ by definition, $Fr(A)=adh(A)$ implies that $int(A)subset adh(A)=C_E(int(A)$ this implies that $int(A)$ is empty since it is contained in its complementary space.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      $partial A = overline{A} setminus A^circ$. (closure minus interior). Also $A^circ subseteq A subseteq overline{A}$.



      From this it's immedediate that $partial A = overline{A}$ iff $A^circ = emptyset$.



      As the OP asks left to right: suppose $x in A^circ$ existed. Then $x in overline{A}$ but $x notin partial A$, contradicting that $partial A = overline{A}$. So $A^circ = emptyset$; the reverse is just substituting in the formula for $partial A$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058609%2fpartiala-cla-longleftrightarrow-inta-emptyset%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        0












        $begingroup$

        Note that $mbox{Fr}(A)=overline{A}setminus A^°$. Now, if $A^°=emptyset$, $mbox{Fr}(A)=overline{A}$ trivially. If, $mbox{Fr}(A)=overline{A}$, it means that $overline{A}cap mbox{int}(A)^c=overline{A}$, which is equivalent to, $overline{A}subset mbox{int}(A)^c$, i.e, $mbox{int}(A)^csubsetoverline{A}^c$, now intersect with $A$, and then $A^°=A^°cap Asubset overline{A}^ccap A=emptyset$ since $Asubsetoverline{A}$.






        share|cite|improve this answer









        $endgroup$


















          0












          $begingroup$

          Note that $mbox{Fr}(A)=overline{A}setminus A^°$. Now, if $A^°=emptyset$, $mbox{Fr}(A)=overline{A}$ trivially. If, $mbox{Fr}(A)=overline{A}$, it means that $overline{A}cap mbox{int}(A)^c=overline{A}$, which is equivalent to, $overline{A}subset mbox{int}(A)^c$, i.e, $mbox{int}(A)^csubsetoverline{A}^c$, now intersect with $A$, and then $A^°=A^°cap Asubset overline{A}^ccap A=emptyset$ since $Asubsetoverline{A}$.






          share|cite|improve this answer









          $endgroup$
















            0












            0








            0





            $begingroup$

            Note that $mbox{Fr}(A)=overline{A}setminus A^°$. Now, if $A^°=emptyset$, $mbox{Fr}(A)=overline{A}$ trivially. If, $mbox{Fr}(A)=overline{A}$, it means that $overline{A}cap mbox{int}(A)^c=overline{A}$, which is equivalent to, $overline{A}subset mbox{int}(A)^c$, i.e, $mbox{int}(A)^csubsetoverline{A}^c$, now intersect with $A$, and then $A^°=A^°cap Asubset overline{A}^ccap A=emptyset$ since $Asubsetoverline{A}$.






            share|cite|improve this answer









            $endgroup$



            Note that $mbox{Fr}(A)=overline{A}setminus A^°$. Now, if $A^°=emptyset$, $mbox{Fr}(A)=overline{A}$ trivially. If, $mbox{Fr}(A)=overline{A}$, it means that $overline{A}cap mbox{int}(A)^c=overline{A}$, which is equivalent to, $overline{A}subset mbox{int}(A)^c$, i.e, $mbox{int}(A)^csubsetoverline{A}^c$, now intersect with $A$, and then $A^°=A^°cap Asubset overline{A}^ccap A=emptyset$ since $Asubsetoverline{A}$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 1 at 16:18









            José Alejandro Aburto AranedaJosé Alejandro Aburto Araneda

            802110




            802110























                0












                $begingroup$

                Another way to see this, $Fr(A)=adh(A)cap C_E(int(A))$ by definition, $Fr(A)=adh(A)$ implies that $int(A)subset adh(A)=C_E(int(A)$ this implies that $int(A)$ is empty since it is contained in its complementary space.






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  Another way to see this, $Fr(A)=adh(A)cap C_E(int(A))$ by definition, $Fr(A)=adh(A)$ implies that $int(A)subset adh(A)=C_E(int(A)$ this implies that $int(A)$ is empty since it is contained in its complementary space.






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    Another way to see this, $Fr(A)=adh(A)cap C_E(int(A))$ by definition, $Fr(A)=adh(A)$ implies that $int(A)subset adh(A)=C_E(int(A)$ this implies that $int(A)$ is empty since it is contained in its complementary space.






                    share|cite|improve this answer









                    $endgroup$



                    Another way to see this, $Fr(A)=adh(A)cap C_E(int(A))$ by definition, $Fr(A)=adh(A)$ implies that $int(A)subset adh(A)=C_E(int(A)$ this implies that $int(A)$ is empty since it is contained in its complementary space.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 1 at 16:19









                    Tsemo AristideTsemo Aristide

                    58.8k11445




                    58.8k11445























                        0












                        $begingroup$

                        $partial A = overline{A} setminus A^circ$. (closure minus interior). Also $A^circ subseteq A subseteq overline{A}$.



                        From this it's immedediate that $partial A = overline{A}$ iff $A^circ = emptyset$.



                        As the OP asks left to right: suppose $x in A^circ$ existed. Then $x in overline{A}$ but $x notin partial A$, contradicting that $partial A = overline{A}$. So $A^circ = emptyset$; the reverse is just substituting in the formula for $partial A$.






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          $partial A = overline{A} setminus A^circ$. (closure minus interior). Also $A^circ subseteq A subseteq overline{A}$.



                          From this it's immedediate that $partial A = overline{A}$ iff $A^circ = emptyset$.



                          As the OP asks left to right: suppose $x in A^circ$ existed. Then $x in overline{A}$ but $x notin partial A$, contradicting that $partial A = overline{A}$. So $A^circ = emptyset$; the reverse is just substituting in the formula for $partial A$.






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            $partial A = overline{A} setminus A^circ$. (closure minus interior). Also $A^circ subseteq A subseteq overline{A}$.



                            From this it's immedediate that $partial A = overline{A}$ iff $A^circ = emptyset$.



                            As the OP asks left to right: suppose $x in A^circ$ existed. Then $x in overline{A}$ but $x notin partial A$, contradicting that $partial A = overline{A}$. So $A^circ = emptyset$; the reverse is just substituting in the formula for $partial A$.






                            share|cite|improve this answer









                            $endgroup$



                            $partial A = overline{A} setminus A^circ$. (closure minus interior). Also $A^circ subseteq A subseteq overline{A}$.



                            From this it's immedediate that $partial A = overline{A}$ iff $A^circ = emptyset$.



                            As the OP asks left to right: suppose $x in A^circ$ existed. Then $x in overline{A}$ but $x notin partial A$, contradicting that $partial A = overline{A}$. So $A^circ = emptyset$; the reverse is just substituting in the formula for $partial A$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 1 at 22:59









                            Henno BrandsmaHenno Brandsma

                            111k348118




                            111k348118






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058609%2fpartiala-cla-longleftrightarrow-inta-emptyset%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Quarter-circle Tiles

                                build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                                Mont Emei