Evaluating an integral using Gegenbauer polynomials
up vote
1
down vote
favorite
I want to evaluate the following integral
$$int frac{(r-r'costheta')^2r'^2,dr'sintheta',dtheta',dphi'}{(r^2+r'^2-2rr'costheta')^{3/2}}$$
Working that a little bit i end up with this expression.
$$frac{2pi}{r^3} int_0^pi dtheta'frac{r^2 (1-frac{r'}{r}costheta')^2sintheta'}{(1+(frac{r'}{r})^2-2frac{r'}{r}costheta' )^{3/2}}int_0^R dr',r'^2$$
Using Gegenbauer polynomials to express the denominator i get
$ frac{2pi}{r} int_0^pi dtheta'(1-frac{r'}{r}costheta')^2sintheta'sum C_n(costheta')(frac{r'}{r})^n int_0^R dr'r'^2$ Doing some more calculations i get the following integrals.
$int_{-1}^1dx sum C_n(x)$ $int_{-1}^1dx sum C_n(x)x^2$ $int_{-1}^1dx sum C_n(x)x$
Which i dont know how to evaluate since I'm missing the weight function $(1-x^2)$ in the integrals
orthogonal-polynomials
add a comment |
up vote
1
down vote
favorite
I want to evaluate the following integral
$$int frac{(r-r'costheta')^2r'^2,dr'sintheta',dtheta',dphi'}{(r^2+r'^2-2rr'costheta')^{3/2}}$$
Working that a little bit i end up with this expression.
$$frac{2pi}{r^3} int_0^pi dtheta'frac{r^2 (1-frac{r'}{r}costheta')^2sintheta'}{(1+(frac{r'}{r})^2-2frac{r'}{r}costheta' )^{3/2}}int_0^R dr',r'^2$$
Using Gegenbauer polynomials to express the denominator i get
$ frac{2pi}{r} int_0^pi dtheta'(1-frac{r'}{r}costheta')^2sintheta'sum C_n(costheta')(frac{r'}{r})^n int_0^R dr'r'^2$ Doing some more calculations i get the following integrals.
$int_{-1}^1dx sum C_n(x)$ $int_{-1}^1dx sum C_n(x)x^2$ $int_{-1}^1dx sum C_n(x)x$
Which i dont know how to evaluate since I'm missing the weight function $(1-x^2)$ in the integrals
orthogonal-polynomials
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I want to evaluate the following integral
$$int frac{(r-r'costheta')^2r'^2,dr'sintheta',dtheta',dphi'}{(r^2+r'^2-2rr'costheta')^{3/2}}$$
Working that a little bit i end up with this expression.
$$frac{2pi}{r^3} int_0^pi dtheta'frac{r^2 (1-frac{r'}{r}costheta')^2sintheta'}{(1+(frac{r'}{r})^2-2frac{r'}{r}costheta' )^{3/2}}int_0^R dr',r'^2$$
Using Gegenbauer polynomials to express the denominator i get
$ frac{2pi}{r} int_0^pi dtheta'(1-frac{r'}{r}costheta')^2sintheta'sum C_n(costheta')(frac{r'}{r})^n int_0^R dr'r'^2$ Doing some more calculations i get the following integrals.
$int_{-1}^1dx sum C_n(x)$ $int_{-1}^1dx sum C_n(x)x^2$ $int_{-1}^1dx sum C_n(x)x$
Which i dont know how to evaluate since I'm missing the weight function $(1-x^2)$ in the integrals
orthogonal-polynomials
I want to evaluate the following integral
$$int frac{(r-r'costheta')^2r'^2,dr'sintheta',dtheta',dphi'}{(r^2+r'^2-2rr'costheta')^{3/2}}$$
Working that a little bit i end up with this expression.
$$frac{2pi}{r^3} int_0^pi dtheta'frac{r^2 (1-frac{r'}{r}costheta')^2sintheta'}{(1+(frac{r'}{r})^2-2frac{r'}{r}costheta' )^{3/2}}int_0^R dr',r'^2$$
Using Gegenbauer polynomials to express the denominator i get
$ frac{2pi}{r} int_0^pi dtheta'(1-frac{r'}{r}costheta')^2sintheta'sum C_n(costheta')(frac{r'}{r})^n int_0^R dr'r'^2$ Doing some more calculations i get the following integrals.
$int_{-1}^1dx sum C_n(x)$ $int_{-1}^1dx sum C_n(x)x^2$ $int_{-1}^1dx sum C_n(x)x$
Which i dont know how to evaluate since I'm missing the weight function $(1-x^2)$ in the integrals
orthogonal-polynomials
orthogonal-polynomials
edited Nov 23 at 8:13
user10354138
6,9951624
6,9951624
asked Nov 22 at 15:08
Dimension Obscura
264
264
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009257%2fevaluating-an-integral-using-gegenbauer-polynomials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009257%2fevaluating-an-integral-using-gegenbauer-polynomials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown