A problem on equivalent definitions of Markov property












2














Suppose that $X, (Omega,mathcal{F}),{P^x}_{x in mathbb{R}^d}$ is a Markov family with shift operators ${theta_s}_{s ge 0}$ and for every $x in mathbb{R}^d,s ge 0, G in mathcal{F}_s$ and $F in mathcal{F}^X_infty$ we have
begin{equation}label{c''}
P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
end{equation}

Then show that the above implies
$P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$
This is part of exercise 2.5.17 in Karatzas and Shreve's Brownian motion and stochastic Calculus.
I could manage to show the converse, i.e $P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$ implies $$P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]$$ as follows:



Using properties of conditional expectation we get
begin{equation*}
begin{split}
P^x[G cap theta_s^{-1} F mid X_s]=E^x[ mathrm{1}_{ {G cap theta_s^{-1} F }} mid X_s]=E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid X_s]\=E^x[ E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]=E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]\= E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] mid X_s]= E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] E^x[ mathrm{1}_{ G} mid X_s]\=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
end{split}
end{equation*}



I tried to prove the other direction similarly but it seems that the same technique doesnt workk. Can you give me a hint on how could I go about proving it? I do not want a complete answer as it would defeat the purpose of the exercise.










share|cite|improve this question



























    2














    Suppose that $X, (Omega,mathcal{F}),{P^x}_{x in mathbb{R}^d}$ is a Markov family with shift operators ${theta_s}_{s ge 0}$ and for every $x in mathbb{R}^d,s ge 0, G in mathcal{F}_s$ and $F in mathcal{F}^X_infty$ we have
    begin{equation}label{c''}
    P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
    end{equation}

    Then show that the above implies
    $P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$
    This is part of exercise 2.5.17 in Karatzas and Shreve's Brownian motion and stochastic Calculus.
    I could manage to show the converse, i.e $P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$ implies $$P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]$$ as follows:



    Using properties of conditional expectation we get
    begin{equation*}
    begin{split}
    P^x[G cap theta_s^{-1} F mid X_s]=E^x[ mathrm{1}_{ {G cap theta_s^{-1} F }} mid X_s]=E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid X_s]\=E^x[ E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]=E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]\= E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] mid X_s]= E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] E^x[ mathrm{1}_{ G} mid X_s]\=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
    end{split}
    end{equation*}



    I tried to prove the other direction similarly but it seems that the same technique doesnt workk. Can you give me a hint on how could I go about proving it? I do not want a complete answer as it would defeat the purpose of the exercise.










    share|cite|improve this question

























      2












      2








      2


      2





      Suppose that $X, (Omega,mathcal{F}),{P^x}_{x in mathbb{R}^d}$ is a Markov family with shift operators ${theta_s}_{s ge 0}$ and for every $x in mathbb{R}^d,s ge 0, G in mathcal{F}_s$ and $F in mathcal{F}^X_infty$ we have
      begin{equation}label{c''}
      P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
      end{equation}

      Then show that the above implies
      $P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$
      This is part of exercise 2.5.17 in Karatzas and Shreve's Brownian motion and stochastic Calculus.
      I could manage to show the converse, i.e $P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$ implies $$P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]$$ as follows:



      Using properties of conditional expectation we get
      begin{equation*}
      begin{split}
      P^x[G cap theta_s^{-1} F mid X_s]=E^x[ mathrm{1}_{ {G cap theta_s^{-1} F }} mid X_s]=E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid X_s]\=E^x[ E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]=E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]\= E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] mid X_s]= E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] E^x[ mathrm{1}_{ G} mid X_s]\=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
      end{split}
      end{equation*}



      I tried to prove the other direction similarly but it seems that the same technique doesnt workk. Can you give me a hint on how could I go about proving it? I do not want a complete answer as it would defeat the purpose of the exercise.










      share|cite|improve this question













      Suppose that $X, (Omega,mathcal{F}),{P^x}_{x in mathbb{R}^d}$ is a Markov family with shift operators ${theta_s}_{s ge 0}$ and for every $x in mathbb{R}^d,s ge 0, G in mathcal{F}_s$ and $F in mathcal{F}^X_infty$ we have
      begin{equation}label{c''}
      P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
      end{equation}

      Then show that the above implies
      $P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$
      This is part of exercise 2.5.17 in Karatzas and Shreve's Brownian motion and stochastic Calculus.
      I could manage to show the converse, i.e $P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$ implies $$P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]$$ as follows:



      Using properties of conditional expectation we get
      begin{equation*}
      begin{split}
      P^x[G cap theta_s^{-1} F mid X_s]=E^x[ mathrm{1}_{ {G cap theta_s^{-1} F }} mid X_s]=E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid X_s]\=E^x[ E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]=E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]\= E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] mid X_s]= E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] E^x[ mathrm{1}_{ G} mid X_s]\=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
      end{split}
      end{equation*}



      I tried to prove the other direction similarly but it seems that the same technique doesnt workk. Can you give me a hint on how could I go about proving it? I do not want a complete answer as it would defeat the purpose of the exercise.







      stochastic-processes stochastic-calculus conditional-expectation markov-process stochastic-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 26 at 10:36









      user3503589

      1,2011721




      1,2011721






















          1 Answer
          1






          active

          oldest

          votes


















          1














          Recall the following characterization of the conditional expectation:




          Let $X in L^1(mathbb{P})$ and let $mathcal{F}$ be a $sigma$-algebra. An $mathcal{F}$-measurable random variable $Y in L^1(mathbb{P})$ equals almost surely $mathbb{E}(X mid mathcal{F})$ if, and only if, $$forall G in mathcal{F}: quad int_G Y , dmathbb{P} = int_G X , dmathbb{P}.$$




          If we apply this result with $mathcal{F} := mathcal{F}_s$, $mathbb{P}=P^x$, $$X := 1_{theta_s^{-1}F} qquad Y := P^x(theta_s^{-1} F mid X_s)$$ we find that $P^x(theta_s^{-1} F mid mathcal{F}_s) = P^x(theta_s^{-1} F mid X_s)$ iff $$forall Gin mathcal{F}_s: quad int_G P^x(theta_s^{-1} F mid X_s) , dP^x = int_G 1_{theta_s^{-1} F} , dP^x.$$
          Use the Markov property to verify this condition. Hint: Start with the right-hand side,



          $$int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) = E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) = dots$$



          Solution:




          begin{align*}int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) &stackrel{text{tower}}{=} E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) \ &stackrel{text{Markov}}{=} E^x left( E^x big(1_G mid X_s big) E^x(1_{theta_s^{-1} F} mid X_s) right) \ &stackrel{text{pull out}}{=} E^x left( E^x big(1_G E^x(1_{theta_s^{-1} F} mid X_s) mid X_s big) right) \ &stackrel{text{tower}}{=} E^x left( 1_G E^x(1_{theta_s^{-1} F} mid X_s) right) \ &= int_G E^x(1_{theta_s^{-1} F} mid X_s) , dP^x end{align*}







          share|cite|improve this answer























          • $dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
            – user3503589
            Nov 26 at 18:33










          • @user3503589 You are welcome
            – saz
            Nov 26 at 18:34











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014169%2fa-problem-on-equivalent-definitions-of-markov-property%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          Recall the following characterization of the conditional expectation:




          Let $X in L^1(mathbb{P})$ and let $mathcal{F}$ be a $sigma$-algebra. An $mathcal{F}$-measurable random variable $Y in L^1(mathbb{P})$ equals almost surely $mathbb{E}(X mid mathcal{F})$ if, and only if, $$forall G in mathcal{F}: quad int_G Y , dmathbb{P} = int_G X , dmathbb{P}.$$




          If we apply this result with $mathcal{F} := mathcal{F}_s$, $mathbb{P}=P^x$, $$X := 1_{theta_s^{-1}F} qquad Y := P^x(theta_s^{-1} F mid X_s)$$ we find that $P^x(theta_s^{-1} F mid mathcal{F}_s) = P^x(theta_s^{-1} F mid X_s)$ iff $$forall Gin mathcal{F}_s: quad int_G P^x(theta_s^{-1} F mid X_s) , dP^x = int_G 1_{theta_s^{-1} F} , dP^x.$$
          Use the Markov property to verify this condition. Hint: Start with the right-hand side,



          $$int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) = E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) = dots$$



          Solution:




          begin{align*}int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) &stackrel{text{tower}}{=} E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) \ &stackrel{text{Markov}}{=} E^x left( E^x big(1_G mid X_s big) E^x(1_{theta_s^{-1} F} mid X_s) right) \ &stackrel{text{pull out}}{=} E^x left( E^x big(1_G E^x(1_{theta_s^{-1} F} mid X_s) mid X_s big) right) \ &stackrel{text{tower}}{=} E^x left( 1_G E^x(1_{theta_s^{-1} F} mid X_s) right) \ &= int_G E^x(1_{theta_s^{-1} F} mid X_s) , dP^x end{align*}







          share|cite|improve this answer























          • $dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
            – user3503589
            Nov 26 at 18:33










          • @user3503589 You are welcome
            – saz
            Nov 26 at 18:34
















          1














          Recall the following characterization of the conditional expectation:




          Let $X in L^1(mathbb{P})$ and let $mathcal{F}$ be a $sigma$-algebra. An $mathcal{F}$-measurable random variable $Y in L^1(mathbb{P})$ equals almost surely $mathbb{E}(X mid mathcal{F})$ if, and only if, $$forall G in mathcal{F}: quad int_G Y , dmathbb{P} = int_G X , dmathbb{P}.$$




          If we apply this result with $mathcal{F} := mathcal{F}_s$, $mathbb{P}=P^x$, $$X := 1_{theta_s^{-1}F} qquad Y := P^x(theta_s^{-1} F mid X_s)$$ we find that $P^x(theta_s^{-1} F mid mathcal{F}_s) = P^x(theta_s^{-1} F mid X_s)$ iff $$forall Gin mathcal{F}_s: quad int_G P^x(theta_s^{-1} F mid X_s) , dP^x = int_G 1_{theta_s^{-1} F} , dP^x.$$
          Use the Markov property to verify this condition. Hint: Start with the right-hand side,



          $$int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) = E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) = dots$$



          Solution:




          begin{align*}int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) &stackrel{text{tower}}{=} E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) \ &stackrel{text{Markov}}{=} E^x left( E^x big(1_G mid X_s big) E^x(1_{theta_s^{-1} F} mid X_s) right) \ &stackrel{text{pull out}}{=} E^x left( E^x big(1_G E^x(1_{theta_s^{-1} F} mid X_s) mid X_s big) right) \ &stackrel{text{tower}}{=} E^x left( 1_G E^x(1_{theta_s^{-1} F} mid X_s) right) \ &= int_G E^x(1_{theta_s^{-1} F} mid X_s) , dP^x end{align*}







          share|cite|improve this answer























          • $dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
            – user3503589
            Nov 26 at 18:33










          • @user3503589 You are welcome
            – saz
            Nov 26 at 18:34














          1












          1








          1






          Recall the following characterization of the conditional expectation:




          Let $X in L^1(mathbb{P})$ and let $mathcal{F}$ be a $sigma$-algebra. An $mathcal{F}$-measurable random variable $Y in L^1(mathbb{P})$ equals almost surely $mathbb{E}(X mid mathcal{F})$ if, and only if, $$forall G in mathcal{F}: quad int_G Y , dmathbb{P} = int_G X , dmathbb{P}.$$




          If we apply this result with $mathcal{F} := mathcal{F}_s$, $mathbb{P}=P^x$, $$X := 1_{theta_s^{-1}F} qquad Y := P^x(theta_s^{-1} F mid X_s)$$ we find that $P^x(theta_s^{-1} F mid mathcal{F}_s) = P^x(theta_s^{-1} F mid X_s)$ iff $$forall Gin mathcal{F}_s: quad int_G P^x(theta_s^{-1} F mid X_s) , dP^x = int_G 1_{theta_s^{-1} F} , dP^x.$$
          Use the Markov property to verify this condition. Hint: Start with the right-hand side,



          $$int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) = E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) = dots$$



          Solution:




          begin{align*}int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) &stackrel{text{tower}}{=} E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) \ &stackrel{text{Markov}}{=} E^x left( E^x big(1_G mid X_s big) E^x(1_{theta_s^{-1} F} mid X_s) right) \ &stackrel{text{pull out}}{=} E^x left( E^x big(1_G E^x(1_{theta_s^{-1} F} mid X_s) mid X_s big) right) \ &stackrel{text{tower}}{=} E^x left( 1_G E^x(1_{theta_s^{-1} F} mid X_s) right) \ &= int_G E^x(1_{theta_s^{-1} F} mid X_s) , dP^x end{align*}







          share|cite|improve this answer














          Recall the following characterization of the conditional expectation:




          Let $X in L^1(mathbb{P})$ and let $mathcal{F}$ be a $sigma$-algebra. An $mathcal{F}$-measurable random variable $Y in L^1(mathbb{P})$ equals almost surely $mathbb{E}(X mid mathcal{F})$ if, and only if, $$forall G in mathcal{F}: quad int_G Y , dmathbb{P} = int_G X , dmathbb{P}.$$




          If we apply this result with $mathcal{F} := mathcal{F}_s$, $mathbb{P}=P^x$, $$X := 1_{theta_s^{-1}F} qquad Y := P^x(theta_s^{-1} F mid X_s)$$ we find that $P^x(theta_s^{-1} F mid mathcal{F}_s) = P^x(theta_s^{-1} F mid X_s)$ iff $$forall Gin mathcal{F}_s: quad int_G P^x(theta_s^{-1} F mid X_s) , dP^x = int_G 1_{theta_s^{-1} F} , dP^x.$$
          Use the Markov property to verify this condition. Hint: Start with the right-hand side,



          $$int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) = E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) = dots$$



          Solution:




          begin{align*}int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) &stackrel{text{tower}}{=} E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) \ &stackrel{text{Markov}}{=} E^x left( E^x big(1_G mid X_s big) E^x(1_{theta_s^{-1} F} mid X_s) right) \ &stackrel{text{pull out}}{=} E^x left( E^x big(1_G E^x(1_{theta_s^{-1} F} mid X_s) mid X_s big) right) \ &stackrel{text{tower}}{=} E^x left( 1_G E^x(1_{theta_s^{-1} F} mid X_s) right) \ &= int_G E^x(1_{theta_s^{-1} F} mid X_s) , dP^x end{align*}








          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 26 at 21:03

























          answered Nov 26 at 18:01









          saz

          78.1k758122




          78.1k758122












          • $dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
            – user3503589
            Nov 26 at 18:33










          • @user3503589 You are welcome
            – saz
            Nov 26 at 18:34


















          • $dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
            – user3503589
            Nov 26 at 18:33










          • @user3503589 You are welcome
            – saz
            Nov 26 at 18:34
















          $dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
          – user3503589
          Nov 26 at 18:33




          $dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
          – user3503589
          Nov 26 at 18:33












          @user3503589 You are welcome
          – saz
          Nov 26 at 18:34




          @user3503589 You are welcome
          – saz
          Nov 26 at 18:34


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014169%2fa-problem-on-equivalent-definitions-of-markov-property%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Mont Emei

          Quarter-circle Tiles