A problem on equivalent definitions of Markov property
Suppose that $X, (Omega,mathcal{F}),{P^x}_{x in mathbb{R}^d}$ is a Markov family with shift operators ${theta_s}_{s ge 0}$ and for every $x in mathbb{R}^d,s ge 0, G in mathcal{F}_s$ and $F in mathcal{F}^X_infty$ we have
begin{equation}label{c''}
P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
end{equation}
Then show that the above implies
$P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$
This is part of exercise 2.5.17 in Karatzas and Shreve's Brownian motion and stochastic Calculus.
I could manage to show the converse, i.e $P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$ implies $$P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]$$ as follows:
Using properties of conditional expectation we get
begin{equation*}
begin{split}
P^x[G cap theta_s^{-1} F mid X_s]=E^x[ mathrm{1}_{ {G cap theta_s^{-1} F }} mid X_s]=E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid X_s]\=E^x[ E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]=E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]\= E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] mid X_s]= E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] E^x[ mathrm{1}_{ G} mid X_s]\=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
end{split}
end{equation*}
I tried to prove the other direction similarly but it seems that the same technique doesnt workk. Can you give me a hint on how could I go about proving it? I do not want a complete answer as it would defeat the purpose of the exercise.
stochastic-processes stochastic-calculus conditional-expectation markov-process stochastic-analysis
add a comment |
Suppose that $X, (Omega,mathcal{F}),{P^x}_{x in mathbb{R}^d}$ is a Markov family with shift operators ${theta_s}_{s ge 0}$ and for every $x in mathbb{R}^d,s ge 0, G in mathcal{F}_s$ and $F in mathcal{F}^X_infty$ we have
begin{equation}label{c''}
P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
end{equation}
Then show that the above implies
$P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$
This is part of exercise 2.5.17 in Karatzas and Shreve's Brownian motion and stochastic Calculus.
I could manage to show the converse, i.e $P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$ implies $$P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]$$ as follows:
Using properties of conditional expectation we get
begin{equation*}
begin{split}
P^x[G cap theta_s^{-1} F mid X_s]=E^x[ mathrm{1}_{ {G cap theta_s^{-1} F }} mid X_s]=E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid X_s]\=E^x[ E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]=E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]\= E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] mid X_s]= E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] E^x[ mathrm{1}_{ G} mid X_s]\=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
end{split}
end{equation*}
I tried to prove the other direction similarly but it seems that the same technique doesnt workk. Can you give me a hint on how could I go about proving it? I do not want a complete answer as it would defeat the purpose of the exercise.
stochastic-processes stochastic-calculus conditional-expectation markov-process stochastic-analysis
add a comment |
Suppose that $X, (Omega,mathcal{F}),{P^x}_{x in mathbb{R}^d}$ is a Markov family with shift operators ${theta_s}_{s ge 0}$ and for every $x in mathbb{R}^d,s ge 0, G in mathcal{F}_s$ and $F in mathcal{F}^X_infty$ we have
begin{equation}label{c''}
P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
end{equation}
Then show that the above implies
$P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$
This is part of exercise 2.5.17 in Karatzas and Shreve's Brownian motion and stochastic Calculus.
I could manage to show the converse, i.e $P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$ implies $$P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]$$ as follows:
Using properties of conditional expectation we get
begin{equation*}
begin{split}
P^x[G cap theta_s^{-1} F mid X_s]=E^x[ mathrm{1}_{ {G cap theta_s^{-1} F }} mid X_s]=E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid X_s]\=E^x[ E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]=E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]\= E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] mid X_s]= E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] E^x[ mathrm{1}_{ G} mid X_s]\=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
end{split}
end{equation*}
I tried to prove the other direction similarly but it seems that the same technique doesnt workk. Can you give me a hint on how could I go about proving it? I do not want a complete answer as it would defeat the purpose of the exercise.
stochastic-processes stochastic-calculus conditional-expectation markov-process stochastic-analysis
Suppose that $X, (Omega,mathcal{F}),{P^x}_{x in mathbb{R}^d}$ is a Markov family with shift operators ${theta_s}_{s ge 0}$ and for every $x in mathbb{R}^d,s ge 0, G in mathcal{F}_s$ and $F in mathcal{F}^X_infty$ we have
begin{equation}label{c''}
P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
end{equation}
Then show that the above implies
$P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$
This is part of exercise 2.5.17 in Karatzas and Shreve's Brownian motion and stochastic Calculus.
I could manage to show the converse, i.e $P^x[theta_s^{-1} F mid mathcal{F}_s]=P^x[theta_s^{-1} F mid X_s] text{ , } P^x text{-a.s.}$ implies $$P^x[G cap theta_s^{-1} F mid X_s]=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]$$ as follows:
Using properties of conditional expectation we get
begin{equation*}
begin{split}
P^x[G cap theta_s^{-1} F mid X_s]=E^x[ mathrm{1}_{ {G cap theta_s^{-1} F }} mid X_s]=E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid X_s]\=E^x[ E^x[ mathrm{1}_{ G} mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]=E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid mathcal{F}_s] mid X_s]\= E^x[ mathrm{1}_{ G} E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] mid X_s]= E^x[ mathrm{1}_{ theta_s^{-1} F } mid X_s] E^x[ mathrm{1}_{ G} mid X_s]\=P^x[G mid X_s]P^x[theta_s^{-1}F mid X_s]
end{split}
end{equation*}
I tried to prove the other direction similarly but it seems that the same technique doesnt workk. Can you give me a hint on how could I go about proving it? I do not want a complete answer as it would defeat the purpose of the exercise.
stochastic-processes stochastic-calculus conditional-expectation markov-process stochastic-analysis
stochastic-processes stochastic-calculus conditional-expectation markov-process stochastic-analysis
asked Nov 26 at 10:36
user3503589
1,2011721
1,2011721
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Recall the following characterization of the conditional expectation:
Let $X in L^1(mathbb{P})$ and let $mathcal{F}$ be a $sigma$-algebra. An $mathcal{F}$-measurable random variable $Y in L^1(mathbb{P})$ equals almost surely $mathbb{E}(X mid mathcal{F})$ if, and only if, $$forall G in mathcal{F}: quad int_G Y , dmathbb{P} = int_G X , dmathbb{P}.$$
If we apply this result with $mathcal{F} := mathcal{F}_s$, $mathbb{P}=P^x$, $$X := 1_{theta_s^{-1}F} qquad Y := P^x(theta_s^{-1} F mid X_s)$$ we find that $P^x(theta_s^{-1} F mid mathcal{F}_s) = P^x(theta_s^{-1} F mid X_s)$ iff $$forall Gin mathcal{F}_s: quad int_G P^x(theta_s^{-1} F mid X_s) , dP^x = int_G 1_{theta_s^{-1} F} , dP^x.$$
Use the Markov property to verify this condition. Hint: Start with the right-hand side,
$$int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) = E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) = dots$$
Solution:
begin{align*}int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) &stackrel{text{tower}}{=} E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) \ &stackrel{text{Markov}}{=} E^x left( E^x big(1_G mid X_s big) E^x(1_{theta_s^{-1} F} mid X_s) right) \ &stackrel{text{pull out}}{=} E^x left( E^x big(1_G E^x(1_{theta_s^{-1} F} mid X_s) mid X_s big) right) \ &stackrel{text{tower}}{=} E^x left( 1_G E^x(1_{theta_s^{-1} F} mid X_s) right) \ &= int_G E^x(1_{theta_s^{-1} F} mid X_s) , dP^x end{align*}
$dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
– user3503589
Nov 26 at 18:33
@user3503589 You are welcome
– saz
Nov 26 at 18:34
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014169%2fa-problem-on-equivalent-definitions-of-markov-property%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Recall the following characterization of the conditional expectation:
Let $X in L^1(mathbb{P})$ and let $mathcal{F}$ be a $sigma$-algebra. An $mathcal{F}$-measurable random variable $Y in L^1(mathbb{P})$ equals almost surely $mathbb{E}(X mid mathcal{F})$ if, and only if, $$forall G in mathcal{F}: quad int_G Y , dmathbb{P} = int_G X , dmathbb{P}.$$
If we apply this result with $mathcal{F} := mathcal{F}_s$, $mathbb{P}=P^x$, $$X := 1_{theta_s^{-1}F} qquad Y := P^x(theta_s^{-1} F mid X_s)$$ we find that $P^x(theta_s^{-1} F mid mathcal{F}_s) = P^x(theta_s^{-1} F mid X_s)$ iff $$forall Gin mathcal{F}_s: quad int_G P^x(theta_s^{-1} F mid X_s) , dP^x = int_G 1_{theta_s^{-1} F} , dP^x.$$
Use the Markov property to verify this condition. Hint: Start with the right-hand side,
$$int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) = E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) = dots$$
Solution:
begin{align*}int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) &stackrel{text{tower}}{=} E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) \ &stackrel{text{Markov}}{=} E^x left( E^x big(1_G mid X_s big) E^x(1_{theta_s^{-1} F} mid X_s) right) \ &stackrel{text{pull out}}{=} E^x left( E^x big(1_G E^x(1_{theta_s^{-1} F} mid X_s) mid X_s big) right) \ &stackrel{text{tower}}{=} E^x left( 1_G E^x(1_{theta_s^{-1} F} mid X_s) right) \ &= int_G E^x(1_{theta_s^{-1} F} mid X_s) , dP^x end{align*}
$dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
– user3503589
Nov 26 at 18:33
@user3503589 You are welcome
– saz
Nov 26 at 18:34
add a comment |
Recall the following characterization of the conditional expectation:
Let $X in L^1(mathbb{P})$ and let $mathcal{F}$ be a $sigma$-algebra. An $mathcal{F}$-measurable random variable $Y in L^1(mathbb{P})$ equals almost surely $mathbb{E}(X mid mathcal{F})$ if, and only if, $$forall G in mathcal{F}: quad int_G Y , dmathbb{P} = int_G X , dmathbb{P}.$$
If we apply this result with $mathcal{F} := mathcal{F}_s$, $mathbb{P}=P^x$, $$X := 1_{theta_s^{-1}F} qquad Y := P^x(theta_s^{-1} F mid X_s)$$ we find that $P^x(theta_s^{-1} F mid mathcal{F}_s) = P^x(theta_s^{-1} F mid X_s)$ iff $$forall Gin mathcal{F}_s: quad int_G P^x(theta_s^{-1} F mid X_s) , dP^x = int_G 1_{theta_s^{-1} F} , dP^x.$$
Use the Markov property to verify this condition. Hint: Start with the right-hand side,
$$int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) = E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) = dots$$
Solution:
begin{align*}int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) &stackrel{text{tower}}{=} E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) \ &stackrel{text{Markov}}{=} E^x left( E^x big(1_G mid X_s big) E^x(1_{theta_s^{-1} F} mid X_s) right) \ &stackrel{text{pull out}}{=} E^x left( E^x big(1_G E^x(1_{theta_s^{-1} F} mid X_s) mid X_s big) right) \ &stackrel{text{tower}}{=} E^x left( 1_G E^x(1_{theta_s^{-1} F} mid X_s) right) \ &= int_G E^x(1_{theta_s^{-1} F} mid X_s) , dP^x end{align*}
$dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
– user3503589
Nov 26 at 18:33
@user3503589 You are welcome
– saz
Nov 26 at 18:34
add a comment |
Recall the following characterization of the conditional expectation:
Let $X in L^1(mathbb{P})$ and let $mathcal{F}$ be a $sigma$-algebra. An $mathcal{F}$-measurable random variable $Y in L^1(mathbb{P})$ equals almost surely $mathbb{E}(X mid mathcal{F})$ if, and only if, $$forall G in mathcal{F}: quad int_G Y , dmathbb{P} = int_G X , dmathbb{P}.$$
If we apply this result with $mathcal{F} := mathcal{F}_s$, $mathbb{P}=P^x$, $$X := 1_{theta_s^{-1}F} qquad Y := P^x(theta_s^{-1} F mid X_s)$$ we find that $P^x(theta_s^{-1} F mid mathcal{F}_s) = P^x(theta_s^{-1} F mid X_s)$ iff $$forall Gin mathcal{F}_s: quad int_G P^x(theta_s^{-1} F mid X_s) , dP^x = int_G 1_{theta_s^{-1} F} , dP^x.$$
Use the Markov property to verify this condition. Hint: Start with the right-hand side,
$$int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) = E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) = dots$$
Solution:
begin{align*}int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) &stackrel{text{tower}}{=} E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) \ &stackrel{text{Markov}}{=} E^x left( E^x big(1_G mid X_s big) E^x(1_{theta_s^{-1} F} mid X_s) right) \ &stackrel{text{pull out}}{=} E^x left( E^x big(1_G E^x(1_{theta_s^{-1} F} mid X_s) mid X_s big) right) \ &stackrel{text{tower}}{=} E^x left( 1_G E^x(1_{theta_s^{-1} F} mid X_s) right) \ &= int_G E^x(1_{theta_s^{-1} F} mid X_s) , dP^x end{align*}
Recall the following characterization of the conditional expectation:
Let $X in L^1(mathbb{P})$ and let $mathcal{F}$ be a $sigma$-algebra. An $mathcal{F}$-measurable random variable $Y in L^1(mathbb{P})$ equals almost surely $mathbb{E}(X mid mathcal{F})$ if, and only if, $$forall G in mathcal{F}: quad int_G Y , dmathbb{P} = int_G X , dmathbb{P}.$$
If we apply this result with $mathcal{F} := mathcal{F}_s$, $mathbb{P}=P^x$, $$X := 1_{theta_s^{-1}F} qquad Y := P^x(theta_s^{-1} F mid X_s)$$ we find that $P^x(theta_s^{-1} F mid mathcal{F}_s) = P^x(theta_s^{-1} F mid X_s)$ iff $$forall Gin mathcal{F}_s: quad int_G P^x(theta_s^{-1} F mid X_s) , dP^x = int_G 1_{theta_s^{-1} F} , dP^x.$$
Use the Markov property to verify this condition. Hint: Start with the right-hand side,
$$int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) = E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) = dots$$
Solution:
begin{align*}int_G 1_{theta_s^{-1} F} , dP^x= E^x left(1_G 1_{theta_s^{-1} F}right) &stackrel{text{tower}}{=} E^x left( E^x big(1_G 1_{theta_s^{-1} F} mid X_s big) right) \ &stackrel{text{Markov}}{=} E^x left( E^x big(1_G mid X_s big) E^x(1_{theta_s^{-1} F} mid X_s) right) \ &stackrel{text{pull out}}{=} E^x left( E^x big(1_G E^x(1_{theta_s^{-1} F} mid X_s) mid X_s big) right) \ &stackrel{text{tower}}{=} E^x left( 1_G E^x(1_{theta_s^{-1} F} mid X_s) right) \ &= int_G E^x(1_{theta_s^{-1} F} mid X_s) , dP^x end{align*}
edited Nov 26 at 21:03
answered Nov 26 at 18:01
saz
78.1k758122
78.1k758122
$dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
– user3503589
Nov 26 at 18:33
@user3503589 You are welcome
– saz
Nov 26 at 18:34
add a comment |
$dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
– user3503589
Nov 26 at 18:33
@user3503589 You are welcome
– saz
Nov 26 at 18:34
$dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
– user3503589
Nov 26 at 18:33
$dots=E^x (E^x(1_G mid X_s)E^x(1_{theta_s^{-1}F} mid X_s))=E^x(1_G E^x(1_{theta_s^{-1}F} mid X_s))$ which is what had to be shown to complete the proof. As always thanks a lot
– user3503589
Nov 26 at 18:33
@user3503589 You are welcome
– saz
Nov 26 at 18:34
@user3503589 You are welcome
– saz
Nov 26 at 18:34
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014169%2fa-problem-on-equivalent-definitions-of-markov-property%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown