Elemental computation?












3














I´m trying to understand the proof of Thm 4. on this paper
https://arxiv.org/pdf/1501.06828.pdf. At the end it claims that after elemental computations it can be shown that
$$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}(1-cos(r
(thetacdottheta_z)))drsigma(dtheta)leq Cvert z vert ^ {2 wedge (4H+alpha-d) } bigg(logfrac{1}{vert z vert}bigg)^{beta}$$

where





  • $rho=1$ if $2=4H+alpha-d$ and $rho=0$ in other case

  • $alpha< d < 4H+alpha $

  • $frac{1}{2}<H<1$


  • $sigma$ is the uniform measure on $mathbb{S}^{d-1}$ and

  • $theta_z=frac{z}{vert zvert}$

  • c is a positive constant


I don´t understand why it follows after elemental computation , I tried bounding $1-cos(r (thetacdottheta_z))$ by 1, but this clearly does not work. For example in the case $4H+alpha-d<2$ we have that after the change of variables $u=frac{r}{vert zvert}$



$$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}drsigma(dtheta)=int_{mathbb{S}^{d-1}}int_0^inftyfrac{u^{d-1-alpha}}{(1+ u^2)^{2H}}drsigma(dtheta)$$



Do you have any idea for proving this claim?










share|cite|improve this question



























    3














    I´m trying to understand the proof of Thm 4. on this paper
    https://arxiv.org/pdf/1501.06828.pdf. At the end it claims that after elemental computations it can be shown that
    $$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}(1-cos(r
    (thetacdottheta_z)))drsigma(dtheta)leq Cvert z vert ^ {2 wedge (4H+alpha-d) } bigg(logfrac{1}{vert z vert}bigg)^{beta}$$

    where





    • $rho=1$ if $2=4H+alpha-d$ and $rho=0$ in other case

    • $alpha< d < 4H+alpha $

    • $frac{1}{2}<H<1$


    • $sigma$ is the uniform measure on $mathbb{S}^{d-1}$ and

    • $theta_z=frac{z}{vert zvert}$

    • c is a positive constant


    I don´t understand why it follows after elemental computation , I tried bounding $1-cos(r (thetacdottheta_z))$ by 1, but this clearly does not work. For example in the case $4H+alpha-d<2$ we have that after the change of variables $u=frac{r}{vert zvert}$



    $$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}drsigma(dtheta)=int_{mathbb{S}^{d-1}}int_0^inftyfrac{u^{d-1-alpha}}{(1+ u^2)^{2H}}drsigma(dtheta)$$



    Do you have any idea for proving this claim?










    share|cite|improve this question

























      3












      3








      3







      I´m trying to understand the proof of Thm 4. on this paper
      https://arxiv.org/pdf/1501.06828.pdf. At the end it claims that after elemental computations it can be shown that
      $$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}(1-cos(r
      (thetacdottheta_z)))drsigma(dtheta)leq Cvert z vert ^ {2 wedge (4H+alpha-d) } bigg(logfrac{1}{vert z vert}bigg)^{beta}$$

      where





      • $rho=1$ if $2=4H+alpha-d$ and $rho=0$ in other case

      • $alpha< d < 4H+alpha $

      • $frac{1}{2}<H<1$


      • $sigma$ is the uniform measure on $mathbb{S}^{d-1}$ and

      • $theta_z=frac{z}{vert zvert}$

      • c is a positive constant


      I don´t understand why it follows after elemental computation , I tried bounding $1-cos(r (thetacdottheta_z))$ by 1, but this clearly does not work. For example in the case $4H+alpha-d<2$ we have that after the change of variables $u=frac{r}{vert zvert}$



      $$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}drsigma(dtheta)=int_{mathbb{S}^{d-1}}int_0^inftyfrac{u^{d-1-alpha}}{(1+ u^2)^{2H}}drsigma(dtheta)$$



      Do you have any idea for proving this claim?










      share|cite|improve this question













      I´m trying to understand the proof of Thm 4. on this paper
      https://arxiv.org/pdf/1501.06828.pdf. At the end it claims that after elemental computations it can be shown that
      $$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}(1-cos(r
      (thetacdottheta_z)))drsigma(dtheta)leq Cvert z vert ^ {2 wedge (4H+alpha-d) } bigg(logfrac{1}{vert z vert}bigg)^{beta}$$

      where





      • $rho=1$ if $2=4H+alpha-d$ and $rho=0$ in other case

      • $alpha< d < 4H+alpha $

      • $frac{1}{2}<H<1$


      • $sigma$ is the uniform measure on $mathbb{S}^{d-1}$ and

      • $theta_z=frac{z}{vert zvert}$

      • c is a positive constant


      I don´t understand why it follows after elemental computation , I tried bounding $1-cos(r (thetacdottheta_z))$ by 1, but this clearly does not work. For example in the case $4H+alpha-d<2$ we have that after the change of variables $u=frac{r}{vert zvert}$



      $$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}drsigma(dtheta)=int_{mathbb{S}^{d-1}}int_0^inftyfrac{u^{d-1-alpha}}{(1+ u^2)^{2H}}drsigma(dtheta)$$



      Do you have any idea for proving this claim?







      real-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 26 at 10:58









      Adrián Hinojosa Calleja

      937




      937



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014187%2felemental-computation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014187%2felemental-computation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Mont Emei

          Quarter-circle Tiles