Elemental computation?
I´m trying to understand the proof of Thm 4. on this paper
https://arxiv.org/pdf/1501.06828.pdf. At the end it claims that after elemental computations it can be shown that
$$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}(1-cos(r
(thetacdottheta_z)))drsigma(dtheta)leq Cvert z vert ^ {2 wedge (4H+alpha-d) } bigg(logfrac{1}{vert z vert}bigg)^{beta}$$
where
$rho=1$ if $2=4H+alpha-d$ and $rho=0$ in other case- $alpha< d < 4H+alpha $
- $frac{1}{2}<H<1$
$sigma$ is the uniform measure on $mathbb{S}^{d-1}$ and- $theta_z=frac{z}{vert zvert}$
- c is a positive constant
I don´t understand why it follows after elemental computation , I tried bounding $1-cos(r (thetacdottheta_z))$ by 1, but this clearly does not work. For example in the case $4H+alpha-d<2$ we have that after the change of variables $u=frac{r}{vert zvert}$
$$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}drsigma(dtheta)=int_{mathbb{S}^{d-1}}int_0^inftyfrac{u^{d-1-alpha}}{(1+ u^2)^{2H}}drsigma(dtheta)$$
Do you have any idea for proving this claim?
real-analysis
add a comment |
I´m trying to understand the proof of Thm 4. on this paper
https://arxiv.org/pdf/1501.06828.pdf. At the end it claims that after elemental computations it can be shown that
$$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}(1-cos(r
(thetacdottheta_z)))drsigma(dtheta)leq Cvert z vert ^ {2 wedge (4H+alpha-d) } bigg(logfrac{1}{vert z vert}bigg)^{beta}$$
where
$rho=1$ if $2=4H+alpha-d$ and $rho=0$ in other case- $alpha< d < 4H+alpha $
- $frac{1}{2}<H<1$
$sigma$ is the uniform measure on $mathbb{S}^{d-1}$ and- $theta_z=frac{z}{vert zvert}$
- c is a positive constant
I don´t understand why it follows after elemental computation , I tried bounding $1-cos(r (thetacdottheta_z))$ by 1, but this clearly does not work. For example in the case $4H+alpha-d<2$ we have that after the change of variables $u=frac{r}{vert zvert}$
$$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}drsigma(dtheta)=int_{mathbb{S}^{d-1}}int_0^inftyfrac{u^{d-1-alpha}}{(1+ u^2)^{2H}}drsigma(dtheta)$$
Do you have any idea for proving this claim?
real-analysis
add a comment |
I´m trying to understand the proof of Thm 4. on this paper
https://arxiv.org/pdf/1501.06828.pdf. At the end it claims that after elemental computations it can be shown that
$$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}(1-cos(r
(thetacdottheta_z)))drsigma(dtheta)leq Cvert z vert ^ {2 wedge (4H+alpha-d) } bigg(logfrac{1}{vert z vert}bigg)^{beta}$$
where
$rho=1$ if $2=4H+alpha-d$ and $rho=0$ in other case- $alpha< d < 4H+alpha $
- $frac{1}{2}<H<1$
$sigma$ is the uniform measure on $mathbb{S}^{d-1}$ and- $theta_z=frac{z}{vert zvert}$
- c is a positive constant
I don´t understand why it follows after elemental computation , I tried bounding $1-cos(r (thetacdottheta_z))$ by 1, but this clearly does not work. For example in the case $4H+alpha-d<2$ we have that after the change of variables $u=frac{r}{vert zvert}$
$$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}drsigma(dtheta)=int_{mathbb{S}^{d-1}}int_0^inftyfrac{u^{d-1-alpha}}{(1+ u^2)^{2H}}drsigma(dtheta)$$
Do you have any idea for proving this claim?
real-analysis
I´m trying to understand the proof of Thm 4. on this paper
https://arxiv.org/pdf/1501.06828.pdf. At the end it claims that after elemental computations it can be shown that
$$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}(1-cos(r
(thetacdottheta_z)))drsigma(dtheta)leq Cvert z vert ^ {2 wedge (4H+alpha-d) } bigg(logfrac{1}{vert z vert}bigg)^{beta}$$
where
$rho=1$ if $2=4H+alpha-d$ and $rho=0$ in other case- $alpha< d < 4H+alpha $
- $frac{1}{2}<H<1$
$sigma$ is the uniform measure on $mathbb{S}^{d-1}$ and- $theta_z=frac{z}{vert zvert}$
- c is a positive constant
I don´t understand why it follows after elemental computation , I tried bounding $1-cos(r (thetacdottheta_z))$ by 1, but this clearly does not work. For example in the case $4H+alpha-d<2$ we have that after the change of variables $u=frac{r}{vert zvert}$
$$vert zvert ^{4H+ alpha -d}int_{mathbb{S}^{d-1}}int_0^inftyfrac{r^{d-1-alpha}}{(vert zvert^2 + r^2)^{2H}}drsigma(dtheta)=int_{mathbb{S}^{d-1}}int_0^inftyfrac{u^{d-1-alpha}}{(1+ u^2)^{2H}}drsigma(dtheta)$$
Do you have any idea for proving this claim?
real-analysis
real-analysis
asked Nov 26 at 10:58
Adrián Hinojosa Calleja
937
937
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014187%2felemental-computation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014187%2felemental-computation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown