Cyclotomic cosets and minimal polynomials












0














Let $mathbb{F}_{p^m}$ be a field and let $alpha in mathbb{F}_{p^m}$. Let $M^{(i)}$ be the minimal polynomial of $alpha^i$. Then I know that $M^{(i)}(x) = prod_{j in C_s} (x - alpha^j)$, where $i$ is in the cyclotomic coset $C_s$.



Further, from this, we get that $x^{p^m - 1} - 1 = prod_{s} M^{s}(x)$, where $s$ runs through the coset representatives mod $p^m - 1$



How do we get this last equation? Is $alpha$ assumed to be primitive here?










share|cite|improve this question






















  • Yes, it sure looks like $alpha$ is assumed to be primitive so that $alpha^j$ ranges over the zeros of $x^{p^m-1}-1$ as $j$ ranges over $0,1,ldots,p^m-2$.
    – Jyrki Lahtonen
    Nov 27 '18 at 3:08
















0














Let $mathbb{F}_{p^m}$ be a field and let $alpha in mathbb{F}_{p^m}$. Let $M^{(i)}$ be the minimal polynomial of $alpha^i$. Then I know that $M^{(i)}(x) = prod_{j in C_s} (x - alpha^j)$, where $i$ is in the cyclotomic coset $C_s$.



Further, from this, we get that $x^{p^m - 1} - 1 = prod_{s} M^{s}(x)$, where $s$ runs through the coset representatives mod $p^m - 1$



How do we get this last equation? Is $alpha$ assumed to be primitive here?










share|cite|improve this question






















  • Yes, it sure looks like $alpha$ is assumed to be primitive so that $alpha^j$ ranges over the zeros of $x^{p^m-1}-1$ as $j$ ranges over $0,1,ldots,p^m-2$.
    – Jyrki Lahtonen
    Nov 27 '18 at 3:08














0












0








0







Let $mathbb{F}_{p^m}$ be a field and let $alpha in mathbb{F}_{p^m}$. Let $M^{(i)}$ be the minimal polynomial of $alpha^i$. Then I know that $M^{(i)}(x) = prod_{j in C_s} (x - alpha^j)$, where $i$ is in the cyclotomic coset $C_s$.



Further, from this, we get that $x^{p^m - 1} - 1 = prod_{s} M^{s}(x)$, where $s$ runs through the coset representatives mod $p^m - 1$



How do we get this last equation? Is $alpha$ assumed to be primitive here?










share|cite|improve this question













Let $mathbb{F}_{p^m}$ be a field and let $alpha in mathbb{F}_{p^m}$. Let $M^{(i)}$ be the minimal polynomial of $alpha^i$. Then I know that $M^{(i)}(x) = prod_{j in C_s} (x - alpha^j)$, where $i$ is in the cyclotomic coset $C_s$.



Further, from this, we get that $x^{p^m - 1} - 1 = prod_{s} M^{s}(x)$, where $s$ runs through the coset representatives mod $p^m - 1$



How do we get this last equation? Is $alpha$ assumed to be primitive here?







field-theory finite-fields minimal-polynomials






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 26 '18 at 20:03









the man

697715




697715












  • Yes, it sure looks like $alpha$ is assumed to be primitive so that $alpha^j$ ranges over the zeros of $x^{p^m-1}-1$ as $j$ ranges over $0,1,ldots,p^m-2$.
    – Jyrki Lahtonen
    Nov 27 '18 at 3:08


















  • Yes, it sure looks like $alpha$ is assumed to be primitive so that $alpha^j$ ranges over the zeros of $x^{p^m-1}-1$ as $j$ ranges over $0,1,ldots,p^m-2$.
    – Jyrki Lahtonen
    Nov 27 '18 at 3:08
















Yes, it sure looks like $alpha$ is assumed to be primitive so that $alpha^j$ ranges over the zeros of $x^{p^m-1}-1$ as $j$ ranges over $0,1,ldots,p^m-2$.
– Jyrki Lahtonen
Nov 27 '18 at 3:08




Yes, it sure looks like $alpha$ is assumed to be primitive so that $alpha^j$ ranges over the zeros of $x^{p^m-1}-1$ as $j$ ranges over $0,1,ldots,p^m-2$.
– Jyrki Lahtonen
Nov 27 '18 at 3:08















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014845%2fcyclotomic-cosets-and-minimal-polynomials%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014845%2fcyclotomic-cosets-and-minimal-polynomials%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei