$d^2u/dx^2 - d^2u/dy^2 = f(x,y)$ $rightarrow$ $d^2u/dξdη =...
$$frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = f(x,y) implies frac{partial^2u}{partial ξpartial η} = frac{1}{4}fleft(frac{1}{2}(ξ+η),frac{1}{2}(η-ξ)right)$$
Setting $ξ = x − y, η = x + y$ I get $x = frac{1}{2}(ξ+η)$ and $y=frac{1}{2}(η-ξ)$
I cant seem to show that $frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = 4times frac{partial^2u}{partial ξpartial η}$
My working is:
$$partial u/partial x = frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$
$$partial u/partial x = -frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$
$$frac{partial^2u}{partial x^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}+ frac{1}{2}frac{partial^2u}{partial ξpartial η}$$
$$frac{partial^2u}{partial y^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}- frac{1}{2}frac{partial^2u}{partial ξpartial η}$$
Where am I going wrong?
Could someone please help?
linear-algebra pde partial-derivative
add a comment |
$$frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = f(x,y) implies frac{partial^2u}{partial ξpartial η} = frac{1}{4}fleft(frac{1}{2}(ξ+η),frac{1}{2}(η-ξ)right)$$
Setting $ξ = x − y, η = x + y$ I get $x = frac{1}{2}(ξ+η)$ and $y=frac{1}{2}(η-ξ)$
I cant seem to show that $frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = 4times frac{partial^2u}{partial ξpartial η}$
My working is:
$$partial u/partial x = frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$
$$partial u/partial x = -frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$
$$frac{partial^2u}{partial x^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}+ frac{1}{2}frac{partial^2u}{partial ξpartial η}$$
$$frac{partial^2u}{partial y^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}- frac{1}{2}frac{partial^2u}{partial ξpartial η}$$
Where am I going wrong?
Could someone please help?
linear-algebra pde partial-derivative
Are the $d$s in your question intended to be $partial$?
– B. Mehta
Nov 26 '18 at 19:08
Yes they are, i dont know how to get the partial symbol
– pablo_mathscobar
Nov 26 '18 at 19:08
As you can see in my edit, you can use partial to get that symbol.
– B. Mehta
Nov 26 '18 at 19:27
add a comment |
$$frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = f(x,y) implies frac{partial^2u}{partial ξpartial η} = frac{1}{4}fleft(frac{1}{2}(ξ+η),frac{1}{2}(η-ξ)right)$$
Setting $ξ = x − y, η = x + y$ I get $x = frac{1}{2}(ξ+η)$ and $y=frac{1}{2}(η-ξ)$
I cant seem to show that $frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = 4times frac{partial^2u}{partial ξpartial η}$
My working is:
$$partial u/partial x = frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$
$$partial u/partial x = -frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$
$$frac{partial^2u}{partial x^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}+ frac{1}{2}frac{partial^2u}{partial ξpartial η}$$
$$frac{partial^2u}{partial y^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}- frac{1}{2}frac{partial^2u}{partial ξpartial η}$$
Where am I going wrong?
Could someone please help?
linear-algebra pde partial-derivative
$$frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = f(x,y) implies frac{partial^2u}{partial ξpartial η} = frac{1}{4}fleft(frac{1}{2}(ξ+η),frac{1}{2}(η-ξ)right)$$
Setting $ξ = x − y, η = x + y$ I get $x = frac{1}{2}(ξ+η)$ and $y=frac{1}{2}(η-ξ)$
I cant seem to show that $frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = 4times frac{partial^2u}{partial ξpartial η}$
My working is:
$$partial u/partial x = frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$
$$partial u/partial x = -frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$
$$frac{partial^2u}{partial x^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}+ frac{1}{2}frac{partial^2u}{partial ξpartial η}$$
$$frac{partial^2u}{partial y^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}- frac{1}{2}frac{partial^2u}{partial ξpartial η}$$
Where am I going wrong?
Could someone please help?
linear-algebra pde partial-derivative
linear-algebra pde partial-derivative
edited Nov 26 '18 at 19:14
B. Mehta
11.8k22144
11.8k22144
asked Nov 26 '18 at 19:04
pablo_mathscobar
836
836
Are the $d$s in your question intended to be $partial$?
– B. Mehta
Nov 26 '18 at 19:08
Yes they are, i dont know how to get the partial symbol
– pablo_mathscobar
Nov 26 '18 at 19:08
As you can see in my edit, you can use partial to get that symbol.
– B. Mehta
Nov 26 '18 at 19:27
add a comment |
Are the $d$s in your question intended to be $partial$?
– B. Mehta
Nov 26 '18 at 19:08
Yes they are, i dont know how to get the partial symbol
– pablo_mathscobar
Nov 26 '18 at 19:08
As you can see in my edit, you can use partial to get that symbol.
– B. Mehta
Nov 26 '18 at 19:27
Are the $d$s in your question intended to be $partial$?
– B. Mehta
Nov 26 '18 at 19:08
Are the $d$s in your question intended to be $partial$?
– B. Mehta
Nov 26 '18 at 19:08
Yes they are, i dont know how to get the partial symbol
– pablo_mathscobar
Nov 26 '18 at 19:08
Yes they are, i dont know how to get the partial symbol
– pablo_mathscobar
Nov 26 '18 at 19:08
As you can see in my edit, you can use partial to get that symbol.
– B. Mehta
Nov 26 '18 at 19:27
As you can see in my edit, you can use partial to get that symbol.
– B. Mehta
Nov 26 '18 at 19:27
add a comment |
1 Answer
1
active
oldest
votes
You applied the chain rule incorrectly.
Applying the chain rule twice, we get
begin{align}
frac{partial^2u}{partial x^2} &= frac{partial}{partial x} left( frac{partial u}{partial xi}frac{partial xi}{partial x}+frac{partial u}{partial eta}frac{partial eta}{partial x} right)
= frac{partial}{partial x} left( frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= frac{partial^2 u}{partial xi^2}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial x}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial x}\
&= frac{partial^2 u}{partial xi^2} + 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}
since
$$ frac{partial xi}{partial x} = frac{partial eta}{partial x} = 1. $$
Analogously,
begin{align}
frac{partial^2u}{partial y^2} &= frac{partial}{partial y} left( frac{partial u}{partial xi}frac{partial xi}{partial y}+frac{partial u}{partial eta}frac{partial eta}{partial y} right)
= frac{partial}{partial x} left( -frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= -frac{partial^2 u}{partial xi^2}frac{partial xi}{partial y}
- frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial y}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial y}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial y}\
&= frac{partial^2 u}{partial xi^2} - 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}
since
$$ frac{partial xi}{partial y} = -1, quadtext{and}quad = frac{partial eta}{partial y} = 1. $$
Subtracting the two gives the result.
thank you, i was making a stupid mistake
– pablo_mathscobar
Nov 26 '18 at 19:17
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014765%2fd2u-dx2-d2u-dy2-fx-y-rightarrow-d2u-d%25ce%25bed%25ce%25b7-frac14f-frac1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You applied the chain rule incorrectly.
Applying the chain rule twice, we get
begin{align}
frac{partial^2u}{partial x^2} &= frac{partial}{partial x} left( frac{partial u}{partial xi}frac{partial xi}{partial x}+frac{partial u}{partial eta}frac{partial eta}{partial x} right)
= frac{partial}{partial x} left( frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= frac{partial^2 u}{partial xi^2}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial x}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial x}\
&= frac{partial^2 u}{partial xi^2} + 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}
since
$$ frac{partial xi}{partial x} = frac{partial eta}{partial x} = 1. $$
Analogously,
begin{align}
frac{partial^2u}{partial y^2} &= frac{partial}{partial y} left( frac{partial u}{partial xi}frac{partial xi}{partial y}+frac{partial u}{partial eta}frac{partial eta}{partial y} right)
= frac{partial}{partial x} left( -frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= -frac{partial^2 u}{partial xi^2}frac{partial xi}{partial y}
- frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial y}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial y}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial y}\
&= frac{partial^2 u}{partial xi^2} - 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}
since
$$ frac{partial xi}{partial y} = -1, quadtext{and}quad = frac{partial eta}{partial y} = 1. $$
Subtracting the two gives the result.
thank you, i was making a stupid mistake
– pablo_mathscobar
Nov 26 '18 at 19:17
add a comment |
You applied the chain rule incorrectly.
Applying the chain rule twice, we get
begin{align}
frac{partial^2u}{partial x^2} &= frac{partial}{partial x} left( frac{partial u}{partial xi}frac{partial xi}{partial x}+frac{partial u}{partial eta}frac{partial eta}{partial x} right)
= frac{partial}{partial x} left( frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= frac{partial^2 u}{partial xi^2}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial x}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial x}\
&= frac{partial^2 u}{partial xi^2} + 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}
since
$$ frac{partial xi}{partial x} = frac{partial eta}{partial x} = 1. $$
Analogously,
begin{align}
frac{partial^2u}{partial y^2} &= frac{partial}{partial y} left( frac{partial u}{partial xi}frac{partial xi}{partial y}+frac{partial u}{partial eta}frac{partial eta}{partial y} right)
= frac{partial}{partial x} left( -frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= -frac{partial^2 u}{partial xi^2}frac{partial xi}{partial y}
- frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial y}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial y}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial y}\
&= frac{partial^2 u}{partial xi^2} - 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}
since
$$ frac{partial xi}{partial y} = -1, quadtext{and}quad = frac{partial eta}{partial y} = 1. $$
Subtracting the two gives the result.
thank you, i was making a stupid mistake
– pablo_mathscobar
Nov 26 '18 at 19:17
add a comment |
You applied the chain rule incorrectly.
Applying the chain rule twice, we get
begin{align}
frac{partial^2u}{partial x^2} &= frac{partial}{partial x} left( frac{partial u}{partial xi}frac{partial xi}{partial x}+frac{partial u}{partial eta}frac{partial eta}{partial x} right)
= frac{partial}{partial x} left( frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= frac{partial^2 u}{partial xi^2}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial x}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial x}\
&= frac{partial^2 u}{partial xi^2} + 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}
since
$$ frac{partial xi}{partial x} = frac{partial eta}{partial x} = 1. $$
Analogously,
begin{align}
frac{partial^2u}{partial y^2} &= frac{partial}{partial y} left( frac{partial u}{partial xi}frac{partial xi}{partial y}+frac{partial u}{partial eta}frac{partial eta}{partial y} right)
= frac{partial}{partial x} left( -frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= -frac{partial^2 u}{partial xi^2}frac{partial xi}{partial y}
- frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial y}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial y}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial y}\
&= frac{partial^2 u}{partial xi^2} - 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}
since
$$ frac{partial xi}{partial y} = -1, quadtext{and}quad = frac{partial eta}{partial y} = 1. $$
Subtracting the two gives the result.
You applied the chain rule incorrectly.
Applying the chain rule twice, we get
begin{align}
frac{partial^2u}{partial x^2} &= frac{partial}{partial x} left( frac{partial u}{partial xi}frac{partial xi}{partial x}+frac{partial u}{partial eta}frac{partial eta}{partial x} right)
= frac{partial}{partial x} left( frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= frac{partial^2 u}{partial xi^2}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial x}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial x}\
&= frac{partial^2 u}{partial xi^2} + 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}
since
$$ frac{partial xi}{partial x} = frac{partial eta}{partial x} = 1. $$
Analogously,
begin{align}
frac{partial^2u}{partial y^2} &= frac{partial}{partial y} left( frac{partial u}{partial xi}frac{partial xi}{partial y}+frac{partial u}{partial eta}frac{partial eta}{partial y} right)
= frac{partial}{partial x} left( -frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= -frac{partial^2 u}{partial xi^2}frac{partial xi}{partial y}
- frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial y}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial y}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial y}\
&= frac{partial^2 u}{partial xi^2} - 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}
since
$$ frac{partial xi}{partial y} = -1, quadtext{and}quad = frac{partial eta}{partial y} = 1. $$
Subtracting the two gives the result.
answered Nov 26 '18 at 19:13
MisterRiemann
5,7791624
5,7791624
thank you, i was making a stupid mistake
– pablo_mathscobar
Nov 26 '18 at 19:17
add a comment |
thank you, i was making a stupid mistake
– pablo_mathscobar
Nov 26 '18 at 19:17
thank you, i was making a stupid mistake
– pablo_mathscobar
Nov 26 '18 at 19:17
thank you, i was making a stupid mistake
– pablo_mathscobar
Nov 26 '18 at 19:17
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014765%2fd2u-dx2-d2u-dy2-fx-y-rightarrow-d2u-d%25ce%25bed%25ce%25b7-frac14f-frac1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Are the $d$s in your question intended to be $partial$?
– B. Mehta
Nov 26 '18 at 19:08
Yes they are, i dont know how to get the partial symbol
– pablo_mathscobar
Nov 26 '18 at 19:08
As you can see in my edit, you can use partial to get that symbol.
– B. Mehta
Nov 26 '18 at 19:27