$d^2u/dx^2 - d^2u/dy^2 = f(x,y)$ $rightarrow$ $d^2u/dξdη =...












0














$$frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = f(x,y) implies frac{partial^2u}{partial ξpartial η} = frac{1}{4}fleft(frac{1}{2}(ξ+η),frac{1}{2}(η-ξ)right)$$



Setting $ξ = x − y, η = x + y$ I get $x = frac{1}{2}(ξ+η)$ and $y=frac{1}{2}(η-ξ)$



I cant seem to show that $frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = 4times frac{partial^2u}{partial ξpartial η}$



My working is:



$$partial u/partial x = frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$



$$partial u/partial x = -frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$



$$frac{partial^2u}{partial x^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}+ frac{1}{2}frac{partial^2u}{partial ξpartial η}$$



$$frac{partial^2u}{partial y^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}- frac{1}{2}frac{partial^2u}{partial ξpartial η}$$



Where am I going wrong?
Could someone please help?










share|cite|improve this question
























  • Are the $d$s in your question intended to be $partial$?
    – B. Mehta
    Nov 26 '18 at 19:08










  • Yes they are, i dont know how to get the partial symbol
    – pablo_mathscobar
    Nov 26 '18 at 19:08










  • As you can see in my edit, you can use partial to get that symbol.
    – B. Mehta
    Nov 26 '18 at 19:27
















0














$$frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = f(x,y) implies frac{partial^2u}{partial ξpartial η} = frac{1}{4}fleft(frac{1}{2}(ξ+η),frac{1}{2}(η-ξ)right)$$



Setting $ξ = x − y, η = x + y$ I get $x = frac{1}{2}(ξ+η)$ and $y=frac{1}{2}(η-ξ)$



I cant seem to show that $frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = 4times frac{partial^2u}{partial ξpartial η}$



My working is:



$$partial u/partial x = frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$



$$partial u/partial x = -frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$



$$frac{partial^2u}{partial x^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}+ frac{1}{2}frac{partial^2u}{partial ξpartial η}$$



$$frac{partial^2u}{partial y^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}- frac{1}{2}frac{partial^2u}{partial ξpartial η}$$



Where am I going wrong?
Could someone please help?










share|cite|improve this question
























  • Are the $d$s in your question intended to be $partial$?
    – B. Mehta
    Nov 26 '18 at 19:08










  • Yes they are, i dont know how to get the partial symbol
    – pablo_mathscobar
    Nov 26 '18 at 19:08










  • As you can see in my edit, you can use partial to get that symbol.
    – B. Mehta
    Nov 26 '18 at 19:27














0












0








0







$$frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = f(x,y) implies frac{partial^2u}{partial ξpartial η} = frac{1}{4}fleft(frac{1}{2}(ξ+η),frac{1}{2}(η-ξ)right)$$



Setting $ξ = x − y, η = x + y$ I get $x = frac{1}{2}(ξ+η)$ and $y=frac{1}{2}(η-ξ)$



I cant seem to show that $frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = 4times frac{partial^2u}{partial ξpartial η}$



My working is:



$$partial u/partial x = frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$



$$partial u/partial x = -frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$



$$frac{partial^2u}{partial x^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}+ frac{1}{2}frac{partial^2u}{partial ξpartial η}$$



$$frac{partial^2u}{partial y^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}- frac{1}{2}frac{partial^2u}{partial ξpartial η}$$



Where am I going wrong?
Could someone please help?










share|cite|improve this question















$$frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = f(x,y) implies frac{partial^2u}{partial ξpartial η} = frac{1}{4}fleft(frac{1}{2}(ξ+η),frac{1}{2}(η-ξ)right)$$



Setting $ξ = x − y, η = x + y$ I get $x = frac{1}{2}(ξ+η)$ and $y=frac{1}{2}(η-ξ)$



I cant seem to show that $frac{partial^2u}{partial x^2} - frac{partial^2u}{partial y^2} = 4times frac{partial^2u}{partial ξpartial η}$



My working is:



$$partial u/partial x = frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$



$$partial u/partial x = -frac{1}{2}frac{partial u} {partial xi} + frac{1}{2}frac{partial u}{partial eta}$$



$$frac{partial^2u}{partial x^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}+ frac{1}{2}frac{partial^2u}{partial ξpartial η}$$



$$frac{partial^2u}{partial y^2} = frac{1}{4}frac{partial^2u}{partial xi^2} + frac{1}{4}frac{partial^2u}{partial eta^2}- frac{1}{2}frac{partial^2u}{partial ξpartial η}$$



Where am I going wrong?
Could someone please help?







linear-algebra pde partial-derivative






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 26 '18 at 19:14









B. Mehta

11.8k22144




11.8k22144










asked Nov 26 '18 at 19:04









pablo_mathscobar

836




836












  • Are the $d$s in your question intended to be $partial$?
    – B. Mehta
    Nov 26 '18 at 19:08










  • Yes they are, i dont know how to get the partial symbol
    – pablo_mathscobar
    Nov 26 '18 at 19:08










  • As you can see in my edit, you can use partial to get that symbol.
    – B. Mehta
    Nov 26 '18 at 19:27


















  • Are the $d$s in your question intended to be $partial$?
    – B. Mehta
    Nov 26 '18 at 19:08










  • Yes they are, i dont know how to get the partial symbol
    – pablo_mathscobar
    Nov 26 '18 at 19:08










  • As you can see in my edit, you can use partial to get that symbol.
    – B. Mehta
    Nov 26 '18 at 19:27
















Are the $d$s in your question intended to be $partial$?
– B. Mehta
Nov 26 '18 at 19:08




Are the $d$s in your question intended to be $partial$?
– B. Mehta
Nov 26 '18 at 19:08












Yes they are, i dont know how to get the partial symbol
– pablo_mathscobar
Nov 26 '18 at 19:08




Yes they are, i dont know how to get the partial symbol
– pablo_mathscobar
Nov 26 '18 at 19:08












As you can see in my edit, you can use partial to get that symbol.
– B. Mehta
Nov 26 '18 at 19:27




As you can see in my edit, you can use partial to get that symbol.
– B. Mehta
Nov 26 '18 at 19:27










1 Answer
1






active

oldest

votes


















0














You applied the chain rule incorrectly.



Applying the chain rule twice, we get
begin{align}
frac{partial^2u}{partial x^2} &= frac{partial}{partial x} left( frac{partial u}{partial xi}frac{partial xi}{partial x}+frac{partial u}{partial eta}frac{partial eta}{partial x} right)
= frac{partial}{partial x} left( frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= frac{partial^2 u}{partial xi^2}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial x}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial x}\
&= frac{partial^2 u}{partial xi^2} + 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}

since
$$ frac{partial xi}{partial x} = frac{partial eta}{partial x} = 1. $$
Analogously,
begin{align}
frac{partial^2u}{partial y^2} &= frac{partial}{partial y} left( frac{partial u}{partial xi}frac{partial xi}{partial y}+frac{partial u}{partial eta}frac{partial eta}{partial y} right)
= frac{partial}{partial x} left( -frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= -frac{partial^2 u}{partial xi^2}frac{partial xi}{partial y}
- frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial y}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial y}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial y}\
&= frac{partial^2 u}{partial xi^2} - 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}

since
$$ frac{partial xi}{partial y} = -1, quadtext{and}quad = frac{partial eta}{partial y} = 1. $$
Subtracting the two gives the result.






share|cite|improve this answer





















  • thank you, i was making a stupid mistake
    – pablo_mathscobar
    Nov 26 '18 at 19:17











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014765%2fd2u-dx2-d2u-dy2-fx-y-rightarrow-d2u-d%25ce%25bed%25ce%25b7-frac14f-frac1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0














You applied the chain rule incorrectly.



Applying the chain rule twice, we get
begin{align}
frac{partial^2u}{partial x^2} &= frac{partial}{partial x} left( frac{partial u}{partial xi}frac{partial xi}{partial x}+frac{partial u}{partial eta}frac{partial eta}{partial x} right)
= frac{partial}{partial x} left( frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= frac{partial^2 u}{partial xi^2}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial x}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial x}\
&= frac{partial^2 u}{partial xi^2} + 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}

since
$$ frac{partial xi}{partial x} = frac{partial eta}{partial x} = 1. $$
Analogously,
begin{align}
frac{partial^2u}{partial y^2} &= frac{partial}{partial y} left( frac{partial u}{partial xi}frac{partial xi}{partial y}+frac{partial u}{partial eta}frac{partial eta}{partial y} right)
= frac{partial}{partial x} left( -frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= -frac{partial^2 u}{partial xi^2}frac{partial xi}{partial y}
- frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial y}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial y}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial y}\
&= frac{partial^2 u}{partial xi^2} - 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}

since
$$ frac{partial xi}{partial y} = -1, quadtext{and}quad = frac{partial eta}{partial y} = 1. $$
Subtracting the two gives the result.






share|cite|improve this answer





















  • thank you, i was making a stupid mistake
    – pablo_mathscobar
    Nov 26 '18 at 19:17
















0














You applied the chain rule incorrectly.



Applying the chain rule twice, we get
begin{align}
frac{partial^2u}{partial x^2} &= frac{partial}{partial x} left( frac{partial u}{partial xi}frac{partial xi}{partial x}+frac{partial u}{partial eta}frac{partial eta}{partial x} right)
= frac{partial}{partial x} left( frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= frac{partial^2 u}{partial xi^2}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial x}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial x}\
&= frac{partial^2 u}{partial xi^2} + 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}

since
$$ frac{partial xi}{partial x} = frac{partial eta}{partial x} = 1. $$
Analogously,
begin{align}
frac{partial^2u}{partial y^2} &= frac{partial}{partial y} left( frac{partial u}{partial xi}frac{partial xi}{partial y}+frac{partial u}{partial eta}frac{partial eta}{partial y} right)
= frac{partial}{partial x} left( -frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= -frac{partial^2 u}{partial xi^2}frac{partial xi}{partial y}
- frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial y}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial y}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial y}\
&= frac{partial^2 u}{partial xi^2} - 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}

since
$$ frac{partial xi}{partial y} = -1, quadtext{and}quad = frac{partial eta}{partial y} = 1. $$
Subtracting the two gives the result.






share|cite|improve this answer





















  • thank you, i was making a stupid mistake
    – pablo_mathscobar
    Nov 26 '18 at 19:17














0












0








0






You applied the chain rule incorrectly.



Applying the chain rule twice, we get
begin{align}
frac{partial^2u}{partial x^2} &= frac{partial}{partial x} left( frac{partial u}{partial xi}frac{partial xi}{partial x}+frac{partial u}{partial eta}frac{partial eta}{partial x} right)
= frac{partial}{partial x} left( frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= frac{partial^2 u}{partial xi^2}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial x}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial x}\
&= frac{partial^2 u}{partial xi^2} + 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}

since
$$ frac{partial xi}{partial x} = frac{partial eta}{partial x} = 1. $$
Analogously,
begin{align}
frac{partial^2u}{partial y^2} &= frac{partial}{partial y} left( frac{partial u}{partial xi}frac{partial xi}{partial y}+frac{partial u}{partial eta}frac{partial eta}{partial y} right)
= frac{partial}{partial x} left( -frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= -frac{partial^2 u}{partial xi^2}frac{partial xi}{partial y}
- frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial y}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial y}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial y}\
&= frac{partial^2 u}{partial xi^2} - 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}

since
$$ frac{partial xi}{partial y} = -1, quadtext{and}quad = frac{partial eta}{partial y} = 1. $$
Subtracting the two gives the result.






share|cite|improve this answer












You applied the chain rule incorrectly.



Applying the chain rule twice, we get
begin{align}
frac{partial^2u}{partial x^2} &= frac{partial}{partial x} left( frac{partial u}{partial xi}frac{partial xi}{partial x}+frac{partial u}{partial eta}frac{partial eta}{partial x} right)
= frac{partial}{partial x} left( frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= frac{partial^2 u}{partial xi^2}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial x}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial x}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial x}\
&= frac{partial^2 u}{partial xi^2} + 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}

since
$$ frac{partial xi}{partial x} = frac{partial eta}{partial x} = 1. $$
Analogously,
begin{align}
frac{partial^2u}{partial y^2} &= frac{partial}{partial y} left( frac{partial u}{partial xi}frac{partial xi}{partial y}+frac{partial u}{partial eta}frac{partial eta}{partial y} right)
= frac{partial}{partial x} left( -frac{partial u}{partial xi}+frac{partial u}{partial eta} right)\
&= -frac{partial^2 u}{partial xi^2}frac{partial xi}{partial y}
- frac{partial^2 u}{partial xi partial eta}frac{partial eta}{partial y}
+ frac{partial^2 u}{partial eta partial xi}frac{partial xi}{partial y}
+ frac{partial^2 u}{partial eta^2}frac{partial eta}{partial y}\
&= frac{partial^2 u}{partial xi^2} - 2frac{partial^2 u}{partial xi partial eta} + frac{partial^2 u}{partial eta^2},
end{align}

since
$$ frac{partial xi}{partial y} = -1, quadtext{and}quad = frac{partial eta}{partial y} = 1. $$
Subtracting the two gives the result.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 26 '18 at 19:13









MisterRiemann

5,7791624




5,7791624












  • thank you, i was making a stupid mistake
    – pablo_mathscobar
    Nov 26 '18 at 19:17


















  • thank you, i was making a stupid mistake
    – pablo_mathscobar
    Nov 26 '18 at 19:17
















thank you, i was making a stupid mistake
– pablo_mathscobar
Nov 26 '18 at 19:17




thank you, i was making a stupid mistake
– pablo_mathscobar
Nov 26 '18 at 19:17


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014765%2fd2u-dx2-d2u-dy2-fx-y-rightarrow-d2u-d%25ce%25bed%25ce%25b7-frac14f-frac1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei