How to determine the convexity of multiple matrix variables function?












0












$begingroup$


This formula is :
$$f(W,V,B) =|XW-V|^2_F +|Y-VB|^2_F +operatorname{tr}(V'LV) +2operatorname{tr}(W'DW),$$
where $X$, $Y$ are constant matrices and $L$ is constant laplace matrix. Suppose $D$ is a constant diagonal matrix.



After @ A.Γ.'s suggestion, I modified the question. The original question is as follows:



Is the convexity of a function with a saddle point multivariate function plus a multivariate convex function necessarily non-convex?










share|cite|improve this question











$endgroup$












  • $begingroup$
    The question is unclear. In your formula, the second term is neither saddle point nor convex function. Answering the question in the title: no, it may be convex, for example, $f(x,y)=x^2-y^2$ and $g(x,y)=y^2$ where $f+g$ is convex.
    $endgroup$
    – A.Γ.
    Dec 9 '18 at 12:25










  • $begingroup$
    @ A.Γ. Sorry, I don't know about this knowledge about convex optimization, so the question is not rigorous enough. why is this formula non-convex?
    $endgroup$
    – learn_truth
    Dec 9 '18 at 12:52
















0












$begingroup$


This formula is :
$$f(W,V,B) =|XW-V|^2_F +|Y-VB|^2_F +operatorname{tr}(V'LV) +2operatorname{tr}(W'DW),$$
where $X$, $Y$ are constant matrices and $L$ is constant laplace matrix. Suppose $D$ is a constant diagonal matrix.



After @ A.Γ.'s suggestion, I modified the question. The original question is as follows:



Is the convexity of a function with a saddle point multivariate function plus a multivariate convex function necessarily non-convex?










share|cite|improve this question











$endgroup$












  • $begingroup$
    The question is unclear. In your formula, the second term is neither saddle point nor convex function. Answering the question in the title: no, it may be convex, for example, $f(x,y)=x^2-y^2$ and $g(x,y)=y^2$ where $f+g$ is convex.
    $endgroup$
    – A.Γ.
    Dec 9 '18 at 12:25










  • $begingroup$
    @ A.Γ. Sorry, I don't know about this knowledge about convex optimization, so the question is not rigorous enough. why is this formula non-convex?
    $endgroup$
    – learn_truth
    Dec 9 '18 at 12:52














0












0








0





$begingroup$


This formula is :
$$f(W,V,B) =|XW-V|^2_F +|Y-VB|^2_F +operatorname{tr}(V'LV) +2operatorname{tr}(W'DW),$$
where $X$, $Y$ are constant matrices and $L$ is constant laplace matrix. Suppose $D$ is a constant diagonal matrix.



After @ A.Γ.'s suggestion, I modified the question. The original question is as follows:



Is the convexity of a function with a saddle point multivariate function plus a multivariate convex function necessarily non-convex?










share|cite|improve this question











$endgroup$




This formula is :
$$f(W,V,B) =|XW-V|^2_F +|Y-VB|^2_F +operatorname{tr}(V'LV) +2operatorname{tr}(W'DW),$$
where $X$, $Y$ are constant matrices and $L$ is constant laplace matrix. Suppose $D$ is a constant diagonal matrix.



After @ A.Γ.'s suggestion, I modified the question. The original question is as follows:



Is the convexity of a function with a saddle point multivariate function plus a multivariate convex function necessarily non-convex?







convex-analysis machine-learning operations-research non-convex-optimization






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 9 '18 at 13:18







learn_truth

















asked Dec 9 '18 at 2:44









learn_truthlearn_truth

12




12












  • $begingroup$
    The question is unclear. In your formula, the second term is neither saddle point nor convex function. Answering the question in the title: no, it may be convex, for example, $f(x,y)=x^2-y^2$ and $g(x,y)=y^2$ where $f+g$ is convex.
    $endgroup$
    – A.Γ.
    Dec 9 '18 at 12:25










  • $begingroup$
    @ A.Γ. Sorry, I don't know about this knowledge about convex optimization, so the question is not rigorous enough. why is this formula non-convex?
    $endgroup$
    – learn_truth
    Dec 9 '18 at 12:52


















  • $begingroup$
    The question is unclear. In your formula, the second term is neither saddle point nor convex function. Answering the question in the title: no, it may be convex, for example, $f(x,y)=x^2-y^2$ and $g(x,y)=y^2$ where $f+g$ is convex.
    $endgroup$
    – A.Γ.
    Dec 9 '18 at 12:25










  • $begingroup$
    @ A.Γ. Sorry, I don't know about this knowledge about convex optimization, so the question is not rigorous enough. why is this formula non-convex?
    $endgroup$
    – learn_truth
    Dec 9 '18 at 12:52
















$begingroup$
The question is unclear. In your formula, the second term is neither saddle point nor convex function. Answering the question in the title: no, it may be convex, for example, $f(x,y)=x^2-y^2$ and $g(x,y)=y^2$ where $f+g$ is convex.
$endgroup$
– A.Γ.
Dec 9 '18 at 12:25




$begingroup$
The question is unclear. In your formula, the second term is neither saddle point nor convex function. Answering the question in the title: no, it may be convex, for example, $f(x,y)=x^2-y^2$ and $g(x,y)=y^2$ where $f+g$ is convex.
$endgroup$
– A.Γ.
Dec 9 '18 at 12:25












$begingroup$
@ A.Γ. Sorry, I don't know about this knowledge about convex optimization, so the question is not rigorous enough. why is this formula non-convex?
$endgroup$
– learn_truth
Dec 9 '18 at 12:52




$begingroup$
@ A.Γ. Sorry, I don't know about this knowledge about convex optimization, so the question is not rigorous enough. why is this formula non-convex?
$endgroup$
– learn_truth
Dec 9 '18 at 12:52










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031933%2fhow-to-determine-the-convexity-of-multiple-matrix-variables-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031933%2fhow-to-determine-the-convexity-of-multiple-matrix-variables-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei