Perimeter of the n-ball
$begingroup$
My task is to calculate the perimeter of the 2-ball (n-ball) using De Giorgi theorem for BV functions.
By definition the perimeter of a Borel set $A$ is the $BV$-norm of its characteristic function $I_A$. De Giorgi theorem states that, if $f in L^1(mathbb{R}^n)$, then $Vert f Vert_{BV}=lim_{t rightarrow 0^+} int_{mathbb{R}^n}Vertnabla P_t f Vert dx$.
In the statement of the theorem $(P_t)_{t geq 0}$ is the Wiener semigroup, namely $P_t f(x)=int_{mathbb{R}^n} f(x+sqrt{t} y)frac{exp(-Vert y Vert^2/2)}{sqrt{2pi}}dy$.
Using change of variables in the integral it turns out to be useful to rewrite $P_t f(x)=int_{mathbb{R}^n} f(x-y)rho_t(y)dy=int_{mathbb{R}^n}f(y)rho_t(x-y)$, where $rho_t(y)=frac{e^{-frac{Vert yVert^2}{2t}}}{2 pi t}$.
In my case of interest $f=I_B$, where $B$ is (to start) the $2$-dimensional ball (later the $n$-dimensional one).
I tried to calculate $nabla P_t I_B$ exchanging derivative and integral, i.e. $frac{partial}{partial x_1}P_t I_B(x)=int_{B}frac{partial}{partial x_1}rho_t(x-y)dy$.
Now i have to integrate over the ball, so i'd like to use Gauss-Green. Using $F(x)=(rho_t(x-y),0)$, i should have $int_{B}frac{partial}{partial x_1}rho_t(x-y)dy=int_{partial B} F.dP$, where the last is the line integral of $F$ over the sphere of radius $r$. How could i go on from this point?
real-analysis integration probability-distributions
$endgroup$
add a comment |
$begingroup$
My task is to calculate the perimeter of the 2-ball (n-ball) using De Giorgi theorem for BV functions.
By definition the perimeter of a Borel set $A$ is the $BV$-norm of its characteristic function $I_A$. De Giorgi theorem states that, if $f in L^1(mathbb{R}^n)$, then $Vert f Vert_{BV}=lim_{t rightarrow 0^+} int_{mathbb{R}^n}Vertnabla P_t f Vert dx$.
In the statement of the theorem $(P_t)_{t geq 0}$ is the Wiener semigroup, namely $P_t f(x)=int_{mathbb{R}^n} f(x+sqrt{t} y)frac{exp(-Vert y Vert^2/2)}{sqrt{2pi}}dy$.
Using change of variables in the integral it turns out to be useful to rewrite $P_t f(x)=int_{mathbb{R}^n} f(x-y)rho_t(y)dy=int_{mathbb{R}^n}f(y)rho_t(x-y)$, where $rho_t(y)=frac{e^{-frac{Vert yVert^2}{2t}}}{2 pi t}$.
In my case of interest $f=I_B$, where $B$ is (to start) the $2$-dimensional ball (later the $n$-dimensional one).
I tried to calculate $nabla P_t I_B$ exchanging derivative and integral, i.e. $frac{partial}{partial x_1}P_t I_B(x)=int_{B}frac{partial}{partial x_1}rho_t(x-y)dy$.
Now i have to integrate over the ball, so i'd like to use Gauss-Green. Using $F(x)=(rho_t(x-y),0)$, i should have $int_{B}frac{partial}{partial x_1}rho_t(x-y)dy=int_{partial B} F.dP$, where the last is the line integral of $F$ over the sphere of radius $r$. How could i go on from this point?
real-analysis integration probability-distributions
$endgroup$
add a comment |
$begingroup$
My task is to calculate the perimeter of the 2-ball (n-ball) using De Giorgi theorem for BV functions.
By definition the perimeter of a Borel set $A$ is the $BV$-norm of its characteristic function $I_A$. De Giorgi theorem states that, if $f in L^1(mathbb{R}^n)$, then $Vert f Vert_{BV}=lim_{t rightarrow 0^+} int_{mathbb{R}^n}Vertnabla P_t f Vert dx$.
In the statement of the theorem $(P_t)_{t geq 0}$ is the Wiener semigroup, namely $P_t f(x)=int_{mathbb{R}^n} f(x+sqrt{t} y)frac{exp(-Vert y Vert^2/2)}{sqrt{2pi}}dy$.
Using change of variables in the integral it turns out to be useful to rewrite $P_t f(x)=int_{mathbb{R}^n} f(x-y)rho_t(y)dy=int_{mathbb{R}^n}f(y)rho_t(x-y)$, where $rho_t(y)=frac{e^{-frac{Vert yVert^2}{2t}}}{2 pi t}$.
In my case of interest $f=I_B$, where $B$ is (to start) the $2$-dimensional ball (later the $n$-dimensional one).
I tried to calculate $nabla P_t I_B$ exchanging derivative and integral, i.e. $frac{partial}{partial x_1}P_t I_B(x)=int_{B}frac{partial}{partial x_1}rho_t(x-y)dy$.
Now i have to integrate over the ball, so i'd like to use Gauss-Green. Using $F(x)=(rho_t(x-y),0)$, i should have $int_{B}frac{partial}{partial x_1}rho_t(x-y)dy=int_{partial B} F.dP$, where the last is the line integral of $F$ over the sphere of radius $r$. How could i go on from this point?
real-analysis integration probability-distributions
$endgroup$
My task is to calculate the perimeter of the 2-ball (n-ball) using De Giorgi theorem for BV functions.
By definition the perimeter of a Borel set $A$ is the $BV$-norm of its characteristic function $I_A$. De Giorgi theorem states that, if $f in L^1(mathbb{R}^n)$, then $Vert f Vert_{BV}=lim_{t rightarrow 0^+} int_{mathbb{R}^n}Vertnabla P_t f Vert dx$.
In the statement of the theorem $(P_t)_{t geq 0}$ is the Wiener semigroup, namely $P_t f(x)=int_{mathbb{R}^n} f(x+sqrt{t} y)frac{exp(-Vert y Vert^2/2)}{sqrt{2pi}}dy$.
Using change of variables in the integral it turns out to be useful to rewrite $P_t f(x)=int_{mathbb{R}^n} f(x-y)rho_t(y)dy=int_{mathbb{R}^n}f(y)rho_t(x-y)$, where $rho_t(y)=frac{e^{-frac{Vert yVert^2}{2t}}}{2 pi t}$.
In my case of interest $f=I_B$, where $B$ is (to start) the $2$-dimensional ball (later the $n$-dimensional one).
I tried to calculate $nabla P_t I_B$ exchanging derivative and integral, i.e. $frac{partial}{partial x_1}P_t I_B(x)=int_{B}frac{partial}{partial x_1}rho_t(x-y)dy$.
Now i have to integrate over the ball, so i'd like to use Gauss-Green. Using $F(x)=(rho_t(x-y),0)$, i should have $int_{B}frac{partial}{partial x_1}rho_t(x-y)dy=int_{partial B} F.dP$, where the last is the line integral of $F$ over the sphere of radius $r$. How could i go on from this point?
real-analysis integration probability-distributions
real-analysis integration probability-distributions
asked Dec 2 '18 at 17:24
AndroAndro
787
787
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022929%2fperimeter-of-the-n-ball%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022929%2fperimeter-of-the-n-ball%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown