Find $p>1$ that ${intlimits^p_1}frac{1}{x},mathrm{d}x={intlimits^p_1}lnleft(xright),mathrm{d}x$












3












$begingroup$


Find $p>1$ that $${displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x$$





begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integral}
end{align*}

$F_1(x)=lnleft({mid x mid} right)+C$



begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}

$F_2(x)=xlnleft(xright)-x+C$





begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 1 mid})+Cright]\
&=lnleft(pright)
end{align*}

begin{align*}
&left[xlnleft(x right)-x+Cright]^p_1=left[plnleft(p right)-p+Cright]-left[1lnleft(1right)-1+Cright]
end{align*}



It was already mentioned, that I had a typo. I corrected everything and contributed my own solution.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Why did you put $0$ instead of $1$?
    $endgroup$
    – metamorphy
    Dec 20 '18 at 10:41










  • $begingroup$
    Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
    $endgroup$
    – Doesbaddel
    Dec 20 '18 at 10:41
















3












$begingroup$


Find $p>1$ that $${displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x$$





begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integral}
end{align*}

$F_1(x)=lnleft({mid x mid} right)+C$



begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}

$F_2(x)=xlnleft(xright)-x+C$





begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 1 mid})+Cright]\
&=lnleft(pright)
end{align*}

begin{align*}
&left[xlnleft(x right)-x+Cright]^p_1=left[plnleft(p right)-p+Cright]-left[1lnleft(1right)-1+Cright]
end{align*}



It was already mentioned, that I had a typo. I corrected everything and contributed my own solution.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Why did you put $0$ instead of $1$?
    $endgroup$
    – metamorphy
    Dec 20 '18 at 10:41










  • $begingroup$
    Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
    $endgroup$
    – Doesbaddel
    Dec 20 '18 at 10:41














3












3








3


1



$begingroup$


Find $p>1$ that $${displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x$$





begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integral}
end{align*}

$F_1(x)=lnleft({mid x mid} right)+C$



begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}

$F_2(x)=xlnleft(xright)-x+C$





begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 1 mid})+Cright]\
&=lnleft(pright)
end{align*}

begin{align*}
&left[xlnleft(x right)-x+Cright]^p_1=left[plnleft(p right)-p+Cright]-left[1lnleft(1right)-1+Cright]
end{align*}



It was already mentioned, that I had a typo. I corrected everything and contributed my own solution.










share|cite|improve this question











$endgroup$




Find $p>1$ that $${displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x$$





begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integral}
end{align*}

$F_1(x)=lnleft({mid x mid} right)+C$



begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}

$F_2(x)=xlnleft(xright)-x+C$





begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 1 mid})+Cright]\
&=lnleft(pright)
end{align*}

begin{align*}
&left[xlnleft(x right)-x+Cright]^p_1=left[plnleft(p right)-p+Cright]-left[1lnleft(1right)-1+Cright]
end{align*}



It was already mentioned, that I had a typo. I corrected everything and contributed my own solution.







calculus analysis definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 20 '18 at 12:08









Eff

11.5k21638




11.5k21638










asked Dec 20 '18 at 10:39









DoesbaddelDoesbaddel

33811




33811








  • 2




    $begingroup$
    Why did you put $0$ instead of $1$?
    $endgroup$
    – metamorphy
    Dec 20 '18 at 10:41










  • $begingroup$
    Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
    $endgroup$
    – Doesbaddel
    Dec 20 '18 at 10:41














  • 2




    $begingroup$
    Why did you put $0$ instead of $1$?
    $endgroup$
    – metamorphy
    Dec 20 '18 at 10:41










  • $begingroup$
    Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
    $endgroup$
    – Doesbaddel
    Dec 20 '18 at 10:41








2




2




$begingroup$
Why did you put $0$ instead of $1$?
$endgroup$
– metamorphy
Dec 20 '18 at 10:41




$begingroup$
Why did you put $0$ instead of $1$?
$endgroup$
– metamorphy
Dec 20 '18 at 10:41












$begingroup$
Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
$endgroup$
– Doesbaddel
Dec 20 '18 at 10:41




$begingroup$
Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
$endgroup$
– Doesbaddel
Dec 20 '18 at 10:41










2 Answers
2






active

oldest

votes


















2












$begingroup$

$ int_1^p frac{1}{x} dx=int_1^p ln x dx iff ln p = p ln p-p+1 iff (1-p) ln p=1-p iff ln p=1 iff p=e.$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Find $p>1$ that
    $$
    {displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x
    $$





    begin{align*}
    &{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integr}
    end{align*}

    $F_1(x)=lnleft({mid x mid} right)+C$



    begin{align*}
    &{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
    &=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
    &=xlnleft(xright)-x
    end{align*}

    $F_2(x)=xlnleft(xright)-x+C$





    begin{align*}
    left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 0 mid})+Cright]\
    &=lnleft(pright)
    end{align*}

    begin{align*}
    left[xlnleft(x right)-x+Cright]^p_1&=left[plnleft(p right)-p+Cright]-left[1lnleft(1 right)-1+Cright]\
    &=left[plnleft(p right)-p+Cright]-[-1+C]\
    &=plnleft(p right)-p+1
    end{align*}

    Solve $lnleft(pright)=plnleft(p right)-p+1$ for $p$:
    begin{align*}
    &lnleft(pright)=plnleft(p right)-p+1&&vert -(1-p+pln(p)\
    &iff-1+p+ln(p)-pln(p)=0\
    &iff-(p-1)cdot (ln(p)-1)=0&& vert cdot (-1)\
    &iff (p-1)cdot (ln(p)-1)=0 && vert p>1\
    &iff (ln(p)-1)=0\
    &iff (ln(p))=1&& vert exp{()}\
    &iff underline{underline{p=e}}
    end{align*}






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047396%2ffind-p1-that-int-limitsp-1-frac1x-mathrmdx-int-limitsp-1-ln%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      $ int_1^p frac{1}{x} dx=int_1^p ln x dx iff ln p = p ln p-p+1 iff (1-p) ln p=1-p iff ln p=1 iff p=e.$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        $ int_1^p frac{1}{x} dx=int_1^p ln x dx iff ln p = p ln p-p+1 iff (1-p) ln p=1-p iff ln p=1 iff p=e.$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          $ int_1^p frac{1}{x} dx=int_1^p ln x dx iff ln p = p ln p-p+1 iff (1-p) ln p=1-p iff ln p=1 iff p=e.$






          share|cite|improve this answer









          $endgroup$



          $ int_1^p frac{1}{x} dx=int_1^p ln x dx iff ln p = p ln p-p+1 iff (1-p) ln p=1-p iff ln p=1 iff p=e.$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 20 '18 at 11:05









          FredFred

          46.8k1848




          46.8k1848























              1












              $begingroup$

              Find $p>1$ that
              $$
              {displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x
              $$





              begin{align*}
              &{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integr}
              end{align*}

              $F_1(x)=lnleft({mid x mid} right)+C$



              begin{align*}
              &{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
              &=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
              &=xlnleft(xright)-x
              end{align*}

              $F_2(x)=xlnleft(xright)-x+C$





              begin{align*}
              left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 0 mid})+Cright]\
              &=lnleft(pright)
              end{align*}

              begin{align*}
              left[xlnleft(x right)-x+Cright]^p_1&=left[plnleft(p right)-p+Cright]-left[1lnleft(1 right)-1+Cright]\
              &=left[plnleft(p right)-p+Cright]-[-1+C]\
              &=plnleft(p right)-p+1
              end{align*}

              Solve $lnleft(pright)=plnleft(p right)-p+1$ for $p$:
              begin{align*}
              &lnleft(pright)=plnleft(p right)-p+1&&vert -(1-p+pln(p)\
              &iff-1+p+ln(p)-pln(p)=0\
              &iff-(p-1)cdot (ln(p)-1)=0&& vert cdot (-1)\
              &iff (p-1)cdot (ln(p)-1)=0 && vert p>1\
              &iff (ln(p)-1)=0\
              &iff (ln(p))=1&& vert exp{()}\
              &iff underline{underline{p=e}}
              end{align*}






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Find $p>1$ that
                $$
                {displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x
                $$





                begin{align*}
                &{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integr}
                end{align*}

                $F_1(x)=lnleft({mid x mid} right)+C$



                begin{align*}
                &{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
                &=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
                &=xlnleft(xright)-x
                end{align*}

                $F_2(x)=xlnleft(xright)-x+C$





                begin{align*}
                left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 0 mid})+Cright]\
                &=lnleft(pright)
                end{align*}

                begin{align*}
                left[xlnleft(x right)-x+Cright]^p_1&=left[plnleft(p right)-p+Cright]-left[1lnleft(1 right)-1+Cright]\
                &=left[plnleft(p right)-p+Cright]-[-1+C]\
                &=plnleft(p right)-p+1
                end{align*}

                Solve $lnleft(pright)=plnleft(p right)-p+1$ for $p$:
                begin{align*}
                &lnleft(pright)=plnleft(p right)-p+1&&vert -(1-p+pln(p)\
                &iff-1+p+ln(p)-pln(p)=0\
                &iff-(p-1)cdot (ln(p)-1)=0&& vert cdot (-1)\
                &iff (p-1)cdot (ln(p)-1)=0 && vert p>1\
                &iff (ln(p)-1)=0\
                &iff (ln(p))=1&& vert exp{()}\
                &iff underline{underline{p=e}}
                end{align*}






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Find $p>1$ that
                  $$
                  {displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x
                  $$





                  begin{align*}
                  &{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integr}
                  end{align*}

                  $F_1(x)=lnleft({mid x mid} right)+C$



                  begin{align*}
                  &{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
                  &=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
                  &=xlnleft(xright)-x
                  end{align*}

                  $F_2(x)=xlnleft(xright)-x+C$





                  begin{align*}
                  left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 0 mid})+Cright]\
                  &=lnleft(pright)
                  end{align*}

                  begin{align*}
                  left[xlnleft(x right)-x+Cright]^p_1&=left[plnleft(p right)-p+Cright]-left[1lnleft(1 right)-1+Cright]\
                  &=left[plnleft(p right)-p+Cright]-[-1+C]\
                  &=plnleft(p right)-p+1
                  end{align*}

                  Solve $lnleft(pright)=plnleft(p right)-p+1$ for $p$:
                  begin{align*}
                  &lnleft(pright)=plnleft(p right)-p+1&&vert -(1-p+pln(p)\
                  &iff-1+p+ln(p)-pln(p)=0\
                  &iff-(p-1)cdot (ln(p)-1)=0&& vert cdot (-1)\
                  &iff (p-1)cdot (ln(p)-1)=0 && vert p>1\
                  &iff (ln(p)-1)=0\
                  &iff (ln(p))=1&& vert exp{()}\
                  &iff underline{underline{p=e}}
                  end{align*}






                  share|cite|improve this answer











                  $endgroup$



                  Find $p>1$ that
                  $$
                  {displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x
                  $$





                  begin{align*}
                  &{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integr}
                  end{align*}

                  $F_1(x)=lnleft({mid x mid} right)+C$



                  begin{align*}
                  &{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
                  &=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
                  &=xlnleft(xright)-x
                  end{align*}

                  $F_2(x)=xlnleft(xright)-x+C$





                  begin{align*}
                  left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 0 mid})+Cright]\
                  &=lnleft(pright)
                  end{align*}

                  begin{align*}
                  left[xlnleft(x right)-x+Cright]^p_1&=left[plnleft(p right)-p+Cright]-left[1lnleft(1 right)-1+Cright]\
                  &=left[plnleft(p right)-p+Cright]-[-1+C]\
                  &=plnleft(p right)-p+1
                  end{align*}

                  Solve $lnleft(pright)=plnleft(p right)-p+1$ for $p$:
                  begin{align*}
                  &lnleft(pright)=plnleft(p right)-p+1&&vert -(1-p+pln(p)\
                  &iff-1+p+ln(p)-pln(p)=0\
                  &iff-(p-1)cdot (ln(p)-1)=0&& vert cdot (-1)\
                  &iff (p-1)cdot (ln(p)-1)=0 && vert p>1\
                  &iff (ln(p)-1)=0\
                  &iff (ln(p))=1&& vert exp{()}\
                  &iff underline{underline{p=e}}
                  end{align*}







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 21 '18 at 9:41

























                  answered Dec 20 '18 at 11:05









                  DoesbaddelDoesbaddel

                  33811




                  33811






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047396%2ffind-p1-that-int-limitsp-1-frac1x-mathrmdx-int-limitsp-1-ln%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Ellipse (mathématiques)

                      Quarter-circle Tiles

                      Mont Emei