Prove that det $A$ = det $A^T$
$begingroup$
I know some ways to prove this, but now I'm looking for another one using this:
$det A=det A^T$
$detleft(frac{ A+A^T}{2} +frac{ A-A^T}{2}right)= det left(frac{ A^T+A}{2} +frac{ A^T-A}{2}right)$
So I have something like:
$det(B+C) = det(B-C)$ where $B$ is symmetric and $C$ is skew-symmetric.
Can it be finished somehow using this?
linear-algebra
$endgroup$
add a comment |
$begingroup$
I know some ways to prove this, but now I'm looking for another one using this:
$det A=det A^T$
$detleft(frac{ A+A^T}{2} +frac{ A-A^T}{2}right)= det left(frac{ A^T+A}{2} +frac{ A^T-A}{2}right)$
So I have something like:
$det(B+C) = det(B-C)$ where $B$ is symmetric and $C$ is skew-symmetric.
Can it be finished somehow using this?
linear-algebra
$endgroup$
add a comment |
$begingroup$
I know some ways to prove this, but now I'm looking for another one using this:
$det A=det A^T$
$detleft(frac{ A+A^T}{2} +frac{ A-A^T}{2}right)= det left(frac{ A^T+A}{2} +frac{ A^T-A}{2}right)$
So I have something like:
$det(B+C) = det(B-C)$ where $B$ is symmetric and $C$ is skew-symmetric.
Can it be finished somehow using this?
linear-algebra
$endgroup$
I know some ways to prove this, but now I'm looking for another one using this:
$det A=det A^T$
$detleft(frac{ A+A^T}{2} +frac{ A-A^T}{2}right)= det left(frac{ A^T+A}{2} +frac{ A^T-A}{2}right)$
So I have something like:
$det(B+C) = det(B-C)$ where $B$ is symmetric and $C$ is skew-symmetric.
Can it be finished somehow using this?
linear-algebra
linear-algebra
edited Dec 20 '18 at 13:56
amWhy
1
1
asked Dec 20 '18 at 11:37
nonamenoname
223
223
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
That's not the approach you want. If $A$ is an $ntimes n$ matrix, $det A=sum_sigmaepsilon_sigmaprod_{i=1}^nA_{isigma(i)}$ is a sum over all permutations $sigma$ of $1,,2,,cdots,,n$, where the Levi-Civita symbol $epsilon_sigma=pm 1$ is the permutation parity of $sigma$. Similarly, $det A^T=sum_sigmaepsilon_sigmaprod_{i=1}^nA_{sigma(i)i}$. Since each permutation has an inverse of the same parity, $det A=det A^T$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047447%2fprove-that-det-a-det-at%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
That's not the approach you want. If $A$ is an $ntimes n$ matrix, $det A=sum_sigmaepsilon_sigmaprod_{i=1}^nA_{isigma(i)}$ is a sum over all permutations $sigma$ of $1,,2,,cdots,,n$, where the Levi-Civita symbol $epsilon_sigma=pm 1$ is the permutation parity of $sigma$. Similarly, $det A^T=sum_sigmaepsilon_sigmaprod_{i=1}^nA_{sigma(i)i}$. Since each permutation has an inverse of the same parity, $det A=det A^T$.
$endgroup$
add a comment |
$begingroup$
That's not the approach you want. If $A$ is an $ntimes n$ matrix, $det A=sum_sigmaepsilon_sigmaprod_{i=1}^nA_{isigma(i)}$ is a sum over all permutations $sigma$ of $1,,2,,cdots,,n$, where the Levi-Civita symbol $epsilon_sigma=pm 1$ is the permutation parity of $sigma$. Similarly, $det A^T=sum_sigmaepsilon_sigmaprod_{i=1}^nA_{sigma(i)i}$. Since each permutation has an inverse of the same parity, $det A=det A^T$.
$endgroup$
add a comment |
$begingroup$
That's not the approach you want. If $A$ is an $ntimes n$ matrix, $det A=sum_sigmaepsilon_sigmaprod_{i=1}^nA_{isigma(i)}$ is a sum over all permutations $sigma$ of $1,,2,,cdots,,n$, where the Levi-Civita symbol $epsilon_sigma=pm 1$ is the permutation parity of $sigma$. Similarly, $det A^T=sum_sigmaepsilon_sigmaprod_{i=1}^nA_{sigma(i)i}$. Since each permutation has an inverse of the same parity, $det A=det A^T$.
$endgroup$
That's not the approach you want. If $A$ is an $ntimes n$ matrix, $det A=sum_sigmaepsilon_sigmaprod_{i=1}^nA_{isigma(i)}$ is a sum over all permutations $sigma$ of $1,,2,,cdots,,n$, where the Levi-Civita symbol $epsilon_sigma=pm 1$ is the permutation parity of $sigma$. Similarly, $det A^T=sum_sigmaepsilon_sigmaprod_{i=1}^nA_{sigma(i)i}$. Since each permutation has an inverse of the same parity, $det A=det A^T$.
answered Dec 20 '18 at 14:15
J.G.J.G.
27.1k22843
27.1k22843
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047447%2fprove-that-det-a-det-at%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown