Finding the Upper and Lower Bounds for Rational Zeros of a Polynomial
$begingroup$
UPDATE 9/29/18: The solution to this problem is that the statement is an "if-then" situation. Unfortunately I was interpreting the theorem in the converse: I thought that any upper bound will satisfy the criteria. However, it only says that IF the selected point satisfies the test, then we can surely say that it will be an upper bound for the zeros. It doesn't mean that any upper bound will satisfy the test.
While trying to understand the upper and lower bounds of real zeros of a polynomial, I have come across something that seems to go against the logic in the textbook.
Let $f(x)$ be a polynomial with real coefficients and a positive leading coefficient. Suppose that $f(x)$ is divided by $x-c$ using synthetic division.
- If $c > 0$ and each number in the bottom row is either positive or zero, $c$ is an upper bound for the real zeros of $f$.
- If $c < 0$ and the numbers in the bottom row are alternately positive and negative (zero entries count as positive or negative), then $c$ is a lower bound for the real zeros of $f$.
I'm trying to find the real zeros of $f(x) = 4x^4 - 20x^3 + 37x^2 - 24x + 5$. According to WolframAlpha, there is only one real zero at $x = {1over2}$ (with multiplicity $2$). This would mean that anything after that would not be a zero according to the Rational Zero Theorem. For example, if I use synthetic division on one of the possible rational zeros, ${5over4}$, then clearly ${1over2} < {5over 4}$ and $$begin{array}{cccccc}boxed{5over4} & 4 & -20 & 37 & -24 & 5\ & & 5 & -{75over4} & {365over16}& -{95over64}\hline & 4 & -15 & {73over4} & -{19over16} & {225over64}end{array}$$
The signs alternate instead of being all positive or zero. Did I make a mistake somewhere in the synthetic division? Even if, immediately at the start, I know we end up with $-15$ which kills the concept of the upper bound right then and there.
Or is there a slight subtlety I'm missing in the Upper and Lower Bound rules? Even if I apply synthetic division to the only zero:
$$begin{array}{cccccc}boxed{1over2} & 4 & -20 & 37 & -24 & 5\ & & 2 & -9 & 14& -5\hline & 4 & -18 & 28 & -10 & boxed{0}end{array}$$
The numbers in the bottom row are not all positive or zero, which isn't telling me that ${1over2}$ is an upper bound like I'd expect it to.
algebra-precalculus polynomials
$endgroup$
add a comment |
$begingroup$
UPDATE 9/29/18: The solution to this problem is that the statement is an "if-then" situation. Unfortunately I was interpreting the theorem in the converse: I thought that any upper bound will satisfy the criteria. However, it only says that IF the selected point satisfies the test, then we can surely say that it will be an upper bound for the zeros. It doesn't mean that any upper bound will satisfy the test.
While trying to understand the upper and lower bounds of real zeros of a polynomial, I have come across something that seems to go against the logic in the textbook.
Let $f(x)$ be a polynomial with real coefficients and a positive leading coefficient. Suppose that $f(x)$ is divided by $x-c$ using synthetic division.
- If $c > 0$ and each number in the bottom row is either positive or zero, $c$ is an upper bound for the real zeros of $f$.
- If $c < 0$ and the numbers in the bottom row are alternately positive and negative (zero entries count as positive or negative), then $c$ is a lower bound for the real zeros of $f$.
I'm trying to find the real zeros of $f(x) = 4x^4 - 20x^3 + 37x^2 - 24x + 5$. According to WolframAlpha, there is only one real zero at $x = {1over2}$ (with multiplicity $2$). This would mean that anything after that would not be a zero according to the Rational Zero Theorem. For example, if I use synthetic division on one of the possible rational zeros, ${5over4}$, then clearly ${1over2} < {5over 4}$ and $$begin{array}{cccccc}boxed{5over4} & 4 & -20 & 37 & -24 & 5\ & & 5 & -{75over4} & {365over16}& -{95over64}\hline & 4 & -15 & {73over4} & -{19over16} & {225over64}end{array}$$
The signs alternate instead of being all positive or zero. Did I make a mistake somewhere in the synthetic division? Even if, immediately at the start, I know we end up with $-15$ which kills the concept of the upper bound right then and there.
Or is there a slight subtlety I'm missing in the Upper and Lower Bound rules? Even if I apply synthetic division to the only zero:
$$begin{array}{cccccc}boxed{1over2} & 4 & -20 & 37 & -24 & 5\ & & 2 & -9 & 14& -5\hline & 4 & -18 & 28 & -10 & boxed{0}end{array}$$
The numbers in the bottom row are not all positive or zero, which isn't telling me that ${1over2}$ is an upper bound like I'd expect it to.
algebra-precalculus polynomials
$endgroup$
$begingroup$
This can be useful to you google.it/…
$endgroup$
– Raffaele
Oct 3 '17 at 20:16
add a comment |
$begingroup$
UPDATE 9/29/18: The solution to this problem is that the statement is an "if-then" situation. Unfortunately I was interpreting the theorem in the converse: I thought that any upper bound will satisfy the criteria. However, it only says that IF the selected point satisfies the test, then we can surely say that it will be an upper bound for the zeros. It doesn't mean that any upper bound will satisfy the test.
While trying to understand the upper and lower bounds of real zeros of a polynomial, I have come across something that seems to go against the logic in the textbook.
Let $f(x)$ be a polynomial with real coefficients and a positive leading coefficient. Suppose that $f(x)$ is divided by $x-c$ using synthetic division.
- If $c > 0$ and each number in the bottom row is either positive or zero, $c$ is an upper bound for the real zeros of $f$.
- If $c < 0$ and the numbers in the bottom row are alternately positive and negative (zero entries count as positive or negative), then $c$ is a lower bound for the real zeros of $f$.
I'm trying to find the real zeros of $f(x) = 4x^4 - 20x^3 + 37x^2 - 24x + 5$. According to WolframAlpha, there is only one real zero at $x = {1over2}$ (with multiplicity $2$). This would mean that anything after that would not be a zero according to the Rational Zero Theorem. For example, if I use synthetic division on one of the possible rational zeros, ${5over4}$, then clearly ${1over2} < {5over 4}$ and $$begin{array}{cccccc}boxed{5over4} & 4 & -20 & 37 & -24 & 5\ & & 5 & -{75over4} & {365over16}& -{95over64}\hline & 4 & -15 & {73over4} & -{19over16} & {225over64}end{array}$$
The signs alternate instead of being all positive or zero. Did I make a mistake somewhere in the synthetic division? Even if, immediately at the start, I know we end up with $-15$ which kills the concept of the upper bound right then and there.
Or is there a slight subtlety I'm missing in the Upper and Lower Bound rules? Even if I apply synthetic division to the only zero:
$$begin{array}{cccccc}boxed{1over2} & 4 & -20 & 37 & -24 & 5\ & & 2 & -9 & 14& -5\hline & 4 & -18 & 28 & -10 & boxed{0}end{array}$$
The numbers in the bottom row are not all positive or zero, which isn't telling me that ${1over2}$ is an upper bound like I'd expect it to.
algebra-precalculus polynomials
$endgroup$
UPDATE 9/29/18: The solution to this problem is that the statement is an "if-then" situation. Unfortunately I was interpreting the theorem in the converse: I thought that any upper bound will satisfy the criteria. However, it only says that IF the selected point satisfies the test, then we can surely say that it will be an upper bound for the zeros. It doesn't mean that any upper bound will satisfy the test.
While trying to understand the upper and lower bounds of real zeros of a polynomial, I have come across something that seems to go against the logic in the textbook.
Let $f(x)$ be a polynomial with real coefficients and a positive leading coefficient. Suppose that $f(x)$ is divided by $x-c$ using synthetic division.
- If $c > 0$ and each number in the bottom row is either positive or zero, $c$ is an upper bound for the real zeros of $f$.
- If $c < 0$ and the numbers in the bottom row are alternately positive and negative (zero entries count as positive or negative), then $c$ is a lower bound for the real zeros of $f$.
I'm trying to find the real zeros of $f(x) = 4x^4 - 20x^3 + 37x^2 - 24x + 5$. According to WolframAlpha, there is only one real zero at $x = {1over2}$ (with multiplicity $2$). This would mean that anything after that would not be a zero according to the Rational Zero Theorem. For example, if I use synthetic division on one of the possible rational zeros, ${5over4}$, then clearly ${1over2} < {5over 4}$ and $$begin{array}{cccccc}boxed{5over4} & 4 & -20 & 37 & -24 & 5\ & & 5 & -{75over4} & {365over16}& -{95over64}\hline & 4 & -15 & {73over4} & -{19over16} & {225over64}end{array}$$
The signs alternate instead of being all positive or zero. Did I make a mistake somewhere in the synthetic division? Even if, immediately at the start, I know we end up with $-15$ which kills the concept of the upper bound right then and there.
Or is there a slight subtlety I'm missing in the Upper and Lower Bound rules? Even if I apply synthetic division to the only zero:
$$begin{array}{cccccc}boxed{1over2} & 4 & -20 & 37 & -24 & 5\ & & 2 & -9 & 14& -5\hline & 4 & -18 & 28 & -10 & boxed{0}end{array}$$
The numbers in the bottom row are not all positive or zero, which isn't telling me that ${1over2}$ is an upper bound like I'd expect it to.
algebra-precalculus polynomials
algebra-precalculus polynomials
edited Sep 29 '18 at 7:49
Decaf-Math
asked Oct 3 '17 at 19:48
Decaf-MathDecaf-Math
3,404825
3,404825
$begingroup$
This can be useful to you google.it/…
$endgroup$
– Raffaele
Oct 3 '17 at 20:16
add a comment |
$begingroup$
This can be useful to you google.it/…
$endgroup$
– Raffaele
Oct 3 '17 at 20:16
$begingroup$
This can be useful to you google.it/…
$endgroup$
– Raffaele
Oct 3 '17 at 20:16
$begingroup$
This can be useful to you google.it/…
$endgroup$
– Raffaele
Oct 3 '17 at 20:16
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
note that your polynomial has the form $$f(x)=(x^2-4x+5)(2x-1)^2$$
$endgroup$
$begingroup$
I'm aware of this, but what about it exactly? To me, $f(x)$ matches the criterion: it has real coefficients, and a positive leading coefficient, but it isn't evident why the upper bound rule isn't working.
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:53
$begingroup$
the upper and the lower bound is $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Oct 3 '17 at 19:54
$begingroup$
It's clear that ${1over2}$ is both the lower and upper bound for the real zeros. However, $$begin{array}{cccccc}boxed{1over2} & 4 & -20 & 37 & -24 & 5\ & & 2 & -9 & 14& -5\hline & 4 & -18 & 28 & -10 & boxed{0}end{array}$$ Since ${1over2}$ is positive, why aren't the numbers in the bottom row staying positive or $0$ to indicate that it is an upper bound? (according to the rules)
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:58
add a comment |
$begingroup$
You're trying to make the theorem say more than it really does. The converse of the theorem isn't true. Just because a number doesn't show up as an upper bound, doesn't mean that there is a real number greater than it that's a zero. The thing that I tell my students to keep in mind (especially with Descartes rule of signs) is that complex zeros will pretend to be either positive or negative, and the complex (imaginary) zeros for this function are beyond 5/4. Your example doesn't go against the theorem, you're just expecting too much out of it.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2456289%2ffinding-the-upper-and-lower-bounds-for-rational-zeros-of-a-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
note that your polynomial has the form $$f(x)=(x^2-4x+5)(2x-1)^2$$
$endgroup$
$begingroup$
I'm aware of this, but what about it exactly? To me, $f(x)$ matches the criterion: it has real coefficients, and a positive leading coefficient, but it isn't evident why the upper bound rule isn't working.
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:53
$begingroup$
the upper and the lower bound is $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Oct 3 '17 at 19:54
$begingroup$
It's clear that ${1over2}$ is both the lower and upper bound for the real zeros. However, $$begin{array}{cccccc}boxed{1over2} & 4 & -20 & 37 & -24 & 5\ & & 2 & -9 & 14& -5\hline & 4 & -18 & 28 & -10 & boxed{0}end{array}$$ Since ${1over2}$ is positive, why aren't the numbers in the bottom row staying positive or $0$ to indicate that it is an upper bound? (according to the rules)
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:58
add a comment |
$begingroup$
note that your polynomial has the form $$f(x)=(x^2-4x+5)(2x-1)^2$$
$endgroup$
$begingroup$
I'm aware of this, but what about it exactly? To me, $f(x)$ matches the criterion: it has real coefficients, and a positive leading coefficient, but it isn't evident why the upper bound rule isn't working.
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:53
$begingroup$
the upper and the lower bound is $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Oct 3 '17 at 19:54
$begingroup$
It's clear that ${1over2}$ is both the lower and upper bound for the real zeros. However, $$begin{array}{cccccc}boxed{1over2} & 4 & -20 & 37 & -24 & 5\ & & 2 & -9 & 14& -5\hline & 4 & -18 & 28 & -10 & boxed{0}end{array}$$ Since ${1over2}$ is positive, why aren't the numbers in the bottom row staying positive or $0$ to indicate that it is an upper bound? (according to the rules)
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:58
add a comment |
$begingroup$
note that your polynomial has the form $$f(x)=(x^2-4x+5)(2x-1)^2$$
$endgroup$
note that your polynomial has the form $$f(x)=(x^2-4x+5)(2x-1)^2$$
answered Oct 3 '17 at 19:51
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
76.2k42866
76.2k42866
$begingroup$
I'm aware of this, but what about it exactly? To me, $f(x)$ matches the criterion: it has real coefficients, and a positive leading coefficient, but it isn't evident why the upper bound rule isn't working.
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:53
$begingroup$
the upper and the lower bound is $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Oct 3 '17 at 19:54
$begingroup$
It's clear that ${1over2}$ is both the lower and upper bound for the real zeros. However, $$begin{array}{cccccc}boxed{1over2} & 4 & -20 & 37 & -24 & 5\ & & 2 & -9 & 14& -5\hline & 4 & -18 & 28 & -10 & boxed{0}end{array}$$ Since ${1over2}$ is positive, why aren't the numbers in the bottom row staying positive or $0$ to indicate that it is an upper bound? (according to the rules)
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:58
add a comment |
$begingroup$
I'm aware of this, but what about it exactly? To me, $f(x)$ matches the criterion: it has real coefficients, and a positive leading coefficient, but it isn't evident why the upper bound rule isn't working.
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:53
$begingroup$
the upper and the lower bound is $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Oct 3 '17 at 19:54
$begingroup$
It's clear that ${1over2}$ is both the lower and upper bound for the real zeros. However, $$begin{array}{cccccc}boxed{1over2} & 4 & -20 & 37 & -24 & 5\ & & 2 & -9 & 14& -5\hline & 4 & -18 & 28 & -10 & boxed{0}end{array}$$ Since ${1over2}$ is positive, why aren't the numbers in the bottom row staying positive or $0$ to indicate that it is an upper bound? (according to the rules)
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:58
$begingroup$
I'm aware of this, but what about it exactly? To me, $f(x)$ matches the criterion: it has real coefficients, and a positive leading coefficient, but it isn't evident why the upper bound rule isn't working.
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:53
$begingroup$
I'm aware of this, but what about it exactly? To me, $f(x)$ matches the criterion: it has real coefficients, and a positive leading coefficient, but it isn't evident why the upper bound rule isn't working.
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:53
$begingroup$
the upper and the lower bound is $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Oct 3 '17 at 19:54
$begingroup$
the upper and the lower bound is $$frac{1}{2}$$
$endgroup$
– Dr. Sonnhard Graubner
Oct 3 '17 at 19:54
$begingroup$
It's clear that ${1over2}$ is both the lower and upper bound for the real zeros. However, $$begin{array}{cccccc}boxed{1over2} & 4 & -20 & 37 & -24 & 5\ & & 2 & -9 & 14& -5\hline & 4 & -18 & 28 & -10 & boxed{0}end{array}$$ Since ${1over2}$ is positive, why aren't the numbers in the bottom row staying positive or $0$ to indicate that it is an upper bound? (according to the rules)
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:58
$begingroup$
It's clear that ${1over2}$ is both the lower and upper bound for the real zeros. However, $$begin{array}{cccccc}boxed{1over2} & 4 & -20 & 37 & -24 & 5\ & & 2 & -9 & 14& -5\hline & 4 & -18 & 28 & -10 & boxed{0}end{array}$$ Since ${1over2}$ is positive, why aren't the numbers in the bottom row staying positive or $0$ to indicate that it is an upper bound? (according to the rules)
$endgroup$
– Decaf-Math
Oct 3 '17 at 19:58
add a comment |
$begingroup$
You're trying to make the theorem say more than it really does. The converse of the theorem isn't true. Just because a number doesn't show up as an upper bound, doesn't mean that there is a real number greater than it that's a zero. The thing that I tell my students to keep in mind (especially with Descartes rule of signs) is that complex zeros will pretend to be either positive or negative, and the complex (imaginary) zeros for this function are beyond 5/4. Your example doesn't go against the theorem, you're just expecting too much out of it.
$endgroup$
add a comment |
$begingroup$
You're trying to make the theorem say more than it really does. The converse of the theorem isn't true. Just because a number doesn't show up as an upper bound, doesn't mean that there is a real number greater than it that's a zero. The thing that I tell my students to keep in mind (especially with Descartes rule of signs) is that complex zeros will pretend to be either positive or negative, and the complex (imaginary) zeros for this function are beyond 5/4. Your example doesn't go against the theorem, you're just expecting too much out of it.
$endgroup$
add a comment |
$begingroup$
You're trying to make the theorem say more than it really does. The converse of the theorem isn't true. Just because a number doesn't show up as an upper bound, doesn't mean that there is a real number greater than it that's a zero. The thing that I tell my students to keep in mind (especially with Descartes rule of signs) is that complex zeros will pretend to be either positive or negative, and the complex (imaginary) zeros for this function are beyond 5/4. Your example doesn't go against the theorem, you're just expecting too much out of it.
$endgroup$
You're trying to make the theorem say more than it really does. The converse of the theorem isn't true. Just because a number doesn't show up as an upper bound, doesn't mean that there is a real number greater than it that's a zero. The thing that I tell my students to keep in mind (especially with Descartes rule of signs) is that complex zeros will pretend to be either positive or negative, and the complex (imaginary) zeros for this function are beyond 5/4. Your example doesn't go against the theorem, you're just expecting too much out of it.
answered Oct 23 '18 at 11:31
Peter HemingwayPeter Hemingway
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2456289%2ffinding-the-upper-and-lower-bounds-for-rational-zeros-of-a-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This can be useful to you google.it/…
$endgroup$
– Raffaele
Oct 3 '17 at 20:16