If $x=2cos t-cos 2t $, $y=2sin t -sin 2t$, find the value of $frac{d^2y}{dx^2}$ when $t= pi /2$












0












$begingroup$


Question $boldsymbol 7$. If $x=2cos t-cos 2t $, $y=2sin t -sin 2t$, find the value of $frac{d^2y}{dx^2}$ when $t= pi /2$



Solution:



begin{align*}
y &= 2sin t -sin 2t \
frac{dy}{dt} &= 2cos t -2cos 2t \
frac{dx}{dt} &=-2sin t +2sin 2t \
frac{dy}{dx} &=frac{dy/dt}{dx/dt} =frac{cos t-cos 2t}{-sin t +sin 2t} \
frac{d^2y}{dx^2} &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t -2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t +2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t +2sin t sin 2t -sin t sin 2t -2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t -sin^2 2t) +sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx}
end{align*}



Have I done any mistake so far?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Please use MathJax to type your problem. Don't give us the hand-written solutions.
    $endgroup$
    – jayant98
    Dec 25 '18 at 15:24
















0












$begingroup$


Question $boldsymbol 7$. If $x=2cos t-cos 2t $, $y=2sin t -sin 2t$, find the value of $frac{d^2y}{dx^2}$ when $t= pi /2$



Solution:



begin{align*}
y &= 2sin t -sin 2t \
frac{dy}{dt} &= 2cos t -2cos 2t \
frac{dx}{dt} &=-2sin t +2sin 2t \
frac{dy}{dx} &=frac{dy/dt}{dx/dt} =frac{cos t-cos 2t}{-sin t +sin 2t} \
frac{d^2y}{dx^2} &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t -2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t +2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t +2sin t sin 2t -sin t sin 2t -2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t -sin^2 2t) +sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx}
end{align*}



Have I done any mistake so far?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Please use MathJax to type your problem. Don't give us the hand-written solutions.
    $endgroup$
    – jayant98
    Dec 25 '18 at 15:24














0












0








0


1



$begingroup$


Question $boldsymbol 7$. If $x=2cos t-cos 2t $, $y=2sin t -sin 2t$, find the value of $frac{d^2y}{dx^2}$ when $t= pi /2$



Solution:



begin{align*}
y &= 2sin t -sin 2t \
frac{dy}{dt} &= 2cos t -2cos 2t \
frac{dx}{dt} &=-2sin t +2sin 2t \
frac{dy}{dx} &=frac{dy/dt}{dx/dt} =frac{cos t-cos 2t}{-sin t +sin 2t} \
frac{d^2y}{dx^2} &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t -2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t +2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t +2sin t sin 2t -sin t sin 2t -2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t -sin^2 2t) +sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx}
end{align*}



Have I done any mistake so far?










share|cite|improve this question











$endgroup$




Question $boldsymbol 7$. If $x=2cos t-cos 2t $, $y=2sin t -sin 2t$, find the value of $frac{d^2y}{dx^2}$ when $t= pi /2$



Solution:



begin{align*}
y &= 2sin t -sin 2t \
frac{dy}{dt} &= 2cos t -2cos 2t \
frac{dx}{dt} &=-2sin t +2sin 2t \
frac{dy}{dx} &=frac{dy/dt}{dx/dt} =frac{cos t-cos 2t}{-sin t +sin 2t} \
frac{d^2y}{dx^2} &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t -2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t +2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t +2sin t sin 2t -sin t sin 2t -2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t -sin^2 2t) +sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx}
end{align*}



Have I done any mistake so far?







calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 26 '18 at 2:29









Key Flex

8,28261233




8,28261233










asked Dec 25 '18 at 15:19









SoumeeSoumee

670614




670614








  • 2




    $begingroup$
    Please use MathJax to type your problem. Don't give us the hand-written solutions.
    $endgroup$
    – jayant98
    Dec 25 '18 at 15:24














  • 2




    $begingroup$
    Please use MathJax to type your problem. Don't give us the hand-written solutions.
    $endgroup$
    – jayant98
    Dec 25 '18 at 15:24








2




2




$begingroup$
Please use MathJax to type your problem. Don't give us the hand-written solutions.
$endgroup$
– jayant98
Dec 25 '18 at 15:24




$begingroup$
Please use MathJax to type your problem. Don't give us the hand-written solutions.
$endgroup$
– jayant98
Dec 25 '18 at 15:24










5 Answers
5






active

oldest

votes


















1












$begingroup$

Mistake: $displaystyle frac{d}{dt} (cos t -cos 2t) =-sin t color{red}{boldsymbol +}2sin 2t$.



begin{align*}
frac{d^2y}{dx^2}
&=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t color{red}{boldsymbol +}2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t color{red}{boldsymbol -}2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t color{red}{boldsymbol -}2sin t sin 2t -sin t sin 2t color{red}{boldsymbol +}2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t color{red}{boldsymbol +}sin^2 2t) color{red}{boldsymbol{-3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{color{red}{boldsymbol{3 -3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= ldots
end{align*}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
    $endgroup$
    – Soumee
    Dec 26 '18 at 6:17



















2












$begingroup$

$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=dfrac{2cos t-2cos2t}{-2sin t+2sin2t}=dfrac{cos2t-cos t}{sin t-sin2t}$$
$$dfrac{d^2y}{dx^2}=dfrac{(-2sin2t+sin t)(sin t-sin2t)-(cos2t-cos t)(cos t-2cos2t)}{(sin t-sin2t)^2-2(sin t-sin2t)}$$



Now $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=dfrac{(1)(1-0)-(-1-0)(0-2(-1))}{-2(1-0)^3}=-dfrac32$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
    $endgroup$
    – Satish Ramanathan
    Dec 25 '18 at 16:07










  • $begingroup$
    @SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
    $endgroup$
    – Key Flex
    Dec 25 '18 at 16:22






  • 1




    $begingroup$
    You are right in your answer. I made a mistake. I am upvoting yours.
    $endgroup$
    – Satish Ramanathan
    Dec 25 '18 at 16:40



















2












$begingroup$

$$x = 2cos t -cos 2t$$



$$y = 2sin t -sin 2t$$



$$frac{dx}{dt} = -2sin t +2sin 2t$$



$$frac{dy}{dt} = 2cos t -2cos 2t$$



$$dfrac{d^2y}{dx^2}=dfrac{(+sin 2t-sin t)(-sin t+2sin 2t)-(-cos 2t+cos t)(-cos t+2cos 2t)}{(-sin t+sin 2t)^2}cdotfrac{dt}{dx}$$
$$frac{d^2y}{dx^2}_{[frac{pi}{2}]} = -frac{3}{2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The answer in the book is $frac{3}{2}$
    $endgroup$
    – Soumee
    Dec 25 '18 at 15:49










  • $begingroup$
    It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
    $endgroup$
    – Takahiro Waki
    Dec 25 '18 at 16:18










  • $begingroup$
    @TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
    $endgroup$
    – Soumee
    Dec 26 '18 at 6:20





















1












$begingroup$

$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=frac{y'_t}{x'_t}$$
$$dfrac{d^2y}{dx^2}=frac{left(frac{y'_t}{x'_t}right)'_t}{x'_t}=
frac{x'_ty''_{tt}-x''_{tt}y'_t}{(x'_t)^3}$$



I get



$$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=-frac{3}{2}$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Alternatively:
    $$xleft(frac{pi}{2}right)=1; yleft(frac{pi}{2}right)=2;\
    x=2cos t-cos 2t Rightarrow cos^2t-2cos t+x-1=0 Rightarrow cos t=frac12-frac{sqrt{3-2x}}2;\
    x^2+y^2=5-4cos t=5-2+2sqrt{3-2x};\
    2x+2yy'=frac{-2}{sqrt{3-2x}} Rightarrow y'(1)=-1;\
    2+2y'^2+2yy''=frac{-2}{sqrt{(3-2x)^2}} Rightarrow y''(1)=frac{-6}4=-frac32.$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052187%2fif-x-2-cos-t-cos-2t-y-2-sin-t-sin-2t-find-the-value-of-fracd2ydx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      5 Answers
      5






      active

      oldest

      votes








      5 Answers
      5






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Mistake: $displaystyle frac{d}{dt} (cos t -cos 2t) =-sin t color{red}{boldsymbol +}2sin 2t$.



      begin{align*}
      frac{d^2y}{dx^2}
      &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
      &=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &=frac{(sin 2t -sin t) (-sin t color{red}{boldsymbol +}2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{(sin t -sin 2t) (sin t color{red}{boldsymbol -}2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{sin^2 t color{red}{boldsymbol -}2sin t sin 2t -sin t sin 2t color{red}{boldsymbol +}2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{1 +2(cos^2 2t color{red}{boldsymbol +}sin^2 2t) color{red}{boldsymbol{-3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{color{red}{boldsymbol{3 -3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= ldots
      end{align*}






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
        $endgroup$
        – Soumee
        Dec 26 '18 at 6:17
















      1












      $begingroup$

      Mistake: $displaystyle frac{d}{dt} (cos t -cos 2t) =-sin t color{red}{boldsymbol +}2sin 2t$.



      begin{align*}
      frac{d^2y}{dx^2}
      &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
      &=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &=frac{(sin 2t -sin t) (-sin t color{red}{boldsymbol +}2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{(sin t -sin 2t) (sin t color{red}{boldsymbol -}2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{sin^2 t color{red}{boldsymbol -}2sin t sin 2t -sin t sin 2t color{red}{boldsymbol +}2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{1 +2(cos^2 2t color{red}{boldsymbol +}sin^2 2t) color{red}{boldsymbol{-3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{color{red}{boldsymbol{3 -3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= ldots
      end{align*}






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
        $endgroup$
        – Soumee
        Dec 26 '18 at 6:17














      1












      1








      1





      $begingroup$

      Mistake: $displaystyle frac{d}{dt} (cos t -cos 2t) =-sin t color{red}{boldsymbol +}2sin 2t$.



      begin{align*}
      frac{d^2y}{dx^2}
      &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
      &=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &=frac{(sin 2t -sin t) (-sin t color{red}{boldsymbol +}2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{(sin t -sin 2t) (sin t color{red}{boldsymbol -}2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{sin^2 t color{red}{boldsymbol -}2sin t sin 2t -sin t sin 2t color{red}{boldsymbol +}2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{1 +2(cos^2 2t color{red}{boldsymbol +}sin^2 2t) color{red}{boldsymbol{-3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{color{red}{boldsymbol{3 -3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= ldots
      end{align*}






      share|cite|improve this answer











      $endgroup$



      Mistake: $displaystyle frac{d}{dt} (cos t -cos 2t) =-sin t color{red}{boldsymbol +}2sin 2t$.



      begin{align*}
      frac{d^2y}{dx^2}
      &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
      &=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &=frac{(sin 2t -sin t) (-sin t color{red}{boldsymbol +}2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{(sin t -sin 2t) (sin t color{red}{boldsymbol -}2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{sin^2 t color{red}{boldsymbol -}2sin t sin 2t -sin t sin 2t color{red}{boldsymbol +}2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{1 +2(cos^2 2t color{red}{boldsymbol +}sin^2 2t) color{red}{boldsymbol{-3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= frac{color{red}{boldsymbol{3 -3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
      &= ldots
      end{align*}







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Dec 26 '18 at 2:23

























      answered Dec 26 '18 at 2:12









      RócherzRócherz

      2,7862721




      2,7862721












      • $begingroup$
        Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
        $endgroup$
        – Soumee
        Dec 26 '18 at 6:17


















      • $begingroup$
        Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
        $endgroup$
        – Soumee
        Dec 26 '18 at 6:17
















      $begingroup$
      Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
      $endgroup$
      – Soumee
      Dec 26 '18 at 6:17




      $begingroup$
      Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
      $endgroup$
      – Soumee
      Dec 26 '18 at 6:17











      2












      $begingroup$

      $$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=dfrac{2cos t-2cos2t}{-2sin t+2sin2t}=dfrac{cos2t-cos t}{sin t-sin2t}$$
      $$dfrac{d^2y}{dx^2}=dfrac{(-2sin2t+sin t)(sin t-sin2t)-(cos2t-cos t)(cos t-2cos2t)}{(sin t-sin2t)^2-2(sin t-sin2t)}$$



      Now $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=dfrac{(1)(1-0)-(-1-0)(0-2(-1))}{-2(1-0)^3}=-dfrac32$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
        $endgroup$
        – Satish Ramanathan
        Dec 25 '18 at 16:07










      • $begingroup$
        @SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
        $endgroup$
        – Key Flex
        Dec 25 '18 at 16:22






      • 1




        $begingroup$
        You are right in your answer. I made a mistake. I am upvoting yours.
        $endgroup$
        – Satish Ramanathan
        Dec 25 '18 at 16:40
















      2












      $begingroup$

      $$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=dfrac{2cos t-2cos2t}{-2sin t+2sin2t}=dfrac{cos2t-cos t}{sin t-sin2t}$$
      $$dfrac{d^2y}{dx^2}=dfrac{(-2sin2t+sin t)(sin t-sin2t)-(cos2t-cos t)(cos t-2cos2t)}{(sin t-sin2t)^2-2(sin t-sin2t)}$$



      Now $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=dfrac{(1)(1-0)-(-1-0)(0-2(-1))}{-2(1-0)^3}=-dfrac32$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
        $endgroup$
        – Satish Ramanathan
        Dec 25 '18 at 16:07










      • $begingroup$
        @SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
        $endgroup$
        – Key Flex
        Dec 25 '18 at 16:22






      • 1




        $begingroup$
        You are right in your answer. I made a mistake. I am upvoting yours.
        $endgroup$
        – Satish Ramanathan
        Dec 25 '18 at 16:40














      2












      2








      2





      $begingroup$

      $$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=dfrac{2cos t-2cos2t}{-2sin t+2sin2t}=dfrac{cos2t-cos t}{sin t-sin2t}$$
      $$dfrac{d^2y}{dx^2}=dfrac{(-2sin2t+sin t)(sin t-sin2t)-(cos2t-cos t)(cos t-2cos2t)}{(sin t-sin2t)^2-2(sin t-sin2t)}$$



      Now $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=dfrac{(1)(1-0)-(-1-0)(0-2(-1))}{-2(1-0)^3}=-dfrac32$$






      share|cite|improve this answer











      $endgroup$



      $$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=dfrac{2cos t-2cos2t}{-2sin t+2sin2t}=dfrac{cos2t-cos t}{sin t-sin2t}$$
      $$dfrac{d^2y}{dx^2}=dfrac{(-2sin2t+sin t)(sin t-sin2t)-(cos2t-cos t)(cos t-2cos2t)}{(sin t-sin2t)^2-2(sin t-sin2t)}$$



      Now $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=dfrac{(1)(1-0)-(-1-0)(0-2(-1))}{-2(1-0)^3}=-dfrac32$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Dec 25 '18 at 16:13

























      answered Dec 25 '18 at 15:59









      Key FlexKey Flex

      8,28261233




      8,28261233












      • $begingroup$
        could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
        $endgroup$
        – Satish Ramanathan
        Dec 25 '18 at 16:07










      • $begingroup$
        @SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
        $endgroup$
        – Key Flex
        Dec 25 '18 at 16:22






      • 1




        $begingroup$
        You are right in your answer. I made a mistake. I am upvoting yours.
        $endgroup$
        – Satish Ramanathan
        Dec 25 '18 at 16:40


















      • $begingroup$
        could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
        $endgroup$
        – Satish Ramanathan
        Dec 25 '18 at 16:07










      • $begingroup$
        @SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
        $endgroup$
        – Key Flex
        Dec 25 '18 at 16:22






      • 1




        $begingroup$
        You are right in your answer. I made a mistake. I am upvoting yours.
        $endgroup$
        – Satish Ramanathan
        Dec 25 '18 at 16:40
















      $begingroup$
      could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
      $endgroup$
      – Satish Ramanathan
      Dec 25 '18 at 16:07




      $begingroup$
      could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
      $endgroup$
      – Satish Ramanathan
      Dec 25 '18 at 16:07












      $begingroup$
      @SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
      $endgroup$
      – Key Flex
      Dec 25 '18 at 16:22




      $begingroup$
      @SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
      $endgroup$
      – Key Flex
      Dec 25 '18 at 16:22




      1




      1




      $begingroup$
      You are right in your answer. I made a mistake. I am upvoting yours.
      $endgroup$
      – Satish Ramanathan
      Dec 25 '18 at 16:40




      $begingroup$
      You are right in your answer. I made a mistake. I am upvoting yours.
      $endgroup$
      – Satish Ramanathan
      Dec 25 '18 at 16:40











      2












      $begingroup$

      $$x = 2cos t -cos 2t$$



      $$y = 2sin t -sin 2t$$



      $$frac{dx}{dt} = -2sin t +2sin 2t$$



      $$frac{dy}{dt} = 2cos t -2cos 2t$$



      $$dfrac{d^2y}{dx^2}=dfrac{(+sin 2t-sin t)(-sin t+2sin 2t)-(-cos 2t+cos t)(-cos t+2cos 2t)}{(-sin t+sin 2t)^2}cdotfrac{dt}{dx}$$
      $$frac{d^2y}{dx^2}_{[frac{pi}{2}]} = -frac{3}{2}$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        The answer in the book is $frac{3}{2}$
        $endgroup$
        – Soumee
        Dec 25 '18 at 15:49










      • $begingroup$
        It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
        $endgroup$
        – Takahiro Waki
        Dec 25 '18 at 16:18










      • $begingroup$
        @TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
        $endgroup$
        – Soumee
        Dec 26 '18 at 6:20


















      2












      $begingroup$

      $$x = 2cos t -cos 2t$$



      $$y = 2sin t -sin 2t$$



      $$frac{dx}{dt} = -2sin t +2sin 2t$$



      $$frac{dy}{dt} = 2cos t -2cos 2t$$



      $$dfrac{d^2y}{dx^2}=dfrac{(+sin 2t-sin t)(-sin t+2sin 2t)-(-cos 2t+cos t)(-cos t+2cos 2t)}{(-sin t+sin 2t)^2}cdotfrac{dt}{dx}$$
      $$frac{d^2y}{dx^2}_{[frac{pi}{2}]} = -frac{3}{2}$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        The answer in the book is $frac{3}{2}$
        $endgroup$
        – Soumee
        Dec 25 '18 at 15:49










      • $begingroup$
        It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
        $endgroup$
        – Takahiro Waki
        Dec 25 '18 at 16:18










      • $begingroup$
        @TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
        $endgroup$
        – Soumee
        Dec 26 '18 at 6:20
















      2












      2








      2





      $begingroup$

      $$x = 2cos t -cos 2t$$



      $$y = 2sin t -sin 2t$$



      $$frac{dx}{dt} = -2sin t +2sin 2t$$



      $$frac{dy}{dt} = 2cos t -2cos 2t$$



      $$dfrac{d^2y}{dx^2}=dfrac{(+sin 2t-sin t)(-sin t+2sin 2t)-(-cos 2t+cos t)(-cos t+2cos 2t)}{(-sin t+sin 2t)^2}cdotfrac{dt}{dx}$$
      $$frac{d^2y}{dx^2}_{[frac{pi}{2}]} = -frac{3}{2}$$






      share|cite|improve this answer











      $endgroup$



      $$x = 2cos t -cos 2t$$



      $$y = 2sin t -sin 2t$$



      $$frac{dx}{dt} = -2sin t +2sin 2t$$



      $$frac{dy}{dt} = 2cos t -2cos 2t$$



      $$dfrac{d^2y}{dx^2}=dfrac{(+sin 2t-sin t)(-sin t+2sin 2t)-(-cos 2t+cos t)(-cos t+2cos 2t)}{(-sin t+sin 2t)^2}cdotfrac{dt}{dx}$$
      $$frac{d^2y}{dx^2}_{[frac{pi}{2}]} = -frac{3}{2}$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Dec 26 '18 at 1:29









      Rócherz

      2,7862721




      2,7862721










      answered Dec 25 '18 at 15:46









      Satish RamanathanSatish Ramanathan

      10k31323




      10k31323












      • $begingroup$
        The answer in the book is $frac{3}{2}$
        $endgroup$
        – Soumee
        Dec 25 '18 at 15:49










      • $begingroup$
        It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
        $endgroup$
        – Takahiro Waki
        Dec 25 '18 at 16:18










      • $begingroup$
        @TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
        $endgroup$
        – Soumee
        Dec 26 '18 at 6:20




















      • $begingroup$
        The answer in the book is $frac{3}{2}$
        $endgroup$
        – Soumee
        Dec 25 '18 at 15:49










      • $begingroup$
        It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
        $endgroup$
        – Takahiro Waki
        Dec 25 '18 at 16:18










      • $begingroup$
        @TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
        $endgroup$
        – Soumee
        Dec 26 '18 at 6:20


















      $begingroup$
      The answer in the book is $frac{3}{2}$
      $endgroup$
      – Soumee
      Dec 25 '18 at 15:49




      $begingroup$
      The answer in the book is $frac{3}{2}$
      $endgroup$
      – Soumee
      Dec 25 '18 at 15:49












      $begingroup$
      It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
      $endgroup$
      – Takahiro Waki
      Dec 25 '18 at 16:18




      $begingroup$
      It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
      $endgroup$
      – Takahiro Waki
      Dec 25 '18 at 16:18












      $begingroup$
      @TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
      $endgroup$
      – Soumee
      Dec 26 '18 at 6:20






      $begingroup$
      @TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
      $endgroup$
      – Soumee
      Dec 26 '18 at 6:20













      1












      $begingroup$

      $$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=frac{y'_t}{x'_t}$$
      $$dfrac{d^2y}{dx^2}=frac{left(frac{y'_t}{x'_t}right)'_t}{x'_t}=
      frac{x'_ty''_{tt}-x''_{tt}y'_t}{(x'_t)^3}$$



      I get



      $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=-frac{3}{2}$$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        $$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=frac{y'_t}{x'_t}$$
        $$dfrac{d^2y}{dx^2}=frac{left(frac{y'_t}{x'_t}right)'_t}{x'_t}=
        frac{x'_ty''_{tt}-x''_{tt}y'_t}{(x'_t)^3}$$



        I get



        $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=-frac{3}{2}$$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          $$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=frac{y'_t}{x'_t}$$
          $$dfrac{d^2y}{dx^2}=frac{left(frac{y'_t}{x'_t}right)'_t}{x'_t}=
          frac{x'_ty''_{tt}-x''_{tt}y'_t}{(x'_t)^3}$$



          I get



          $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=-frac{3}{2}$$






          share|cite|improve this answer









          $endgroup$



          $$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=frac{y'_t}{x'_t}$$
          $$dfrac{d^2y}{dx^2}=frac{left(frac{y'_t}{x'_t}right)'_t}{x'_t}=
          frac{x'_ty''_{tt}-x''_{tt}y'_t}{(x'_t)^3}$$



          I get



          $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=-frac{3}{2}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 25 '18 at 16:49









          Aleksas DomarkasAleksas Domarkas

          1,31216




          1,31216























              1












              $begingroup$

              Alternatively:
              $$xleft(frac{pi}{2}right)=1; yleft(frac{pi}{2}right)=2;\
              x=2cos t-cos 2t Rightarrow cos^2t-2cos t+x-1=0 Rightarrow cos t=frac12-frac{sqrt{3-2x}}2;\
              x^2+y^2=5-4cos t=5-2+2sqrt{3-2x};\
              2x+2yy'=frac{-2}{sqrt{3-2x}} Rightarrow y'(1)=-1;\
              2+2y'^2+2yy''=frac{-2}{sqrt{(3-2x)^2}} Rightarrow y''(1)=frac{-6}4=-frac32.$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Alternatively:
                $$xleft(frac{pi}{2}right)=1; yleft(frac{pi}{2}right)=2;\
                x=2cos t-cos 2t Rightarrow cos^2t-2cos t+x-1=0 Rightarrow cos t=frac12-frac{sqrt{3-2x}}2;\
                x^2+y^2=5-4cos t=5-2+2sqrt{3-2x};\
                2x+2yy'=frac{-2}{sqrt{3-2x}} Rightarrow y'(1)=-1;\
                2+2y'^2+2yy''=frac{-2}{sqrt{(3-2x)^2}} Rightarrow y''(1)=frac{-6}4=-frac32.$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Alternatively:
                  $$xleft(frac{pi}{2}right)=1; yleft(frac{pi}{2}right)=2;\
                  x=2cos t-cos 2t Rightarrow cos^2t-2cos t+x-1=0 Rightarrow cos t=frac12-frac{sqrt{3-2x}}2;\
                  x^2+y^2=5-4cos t=5-2+2sqrt{3-2x};\
                  2x+2yy'=frac{-2}{sqrt{3-2x}} Rightarrow y'(1)=-1;\
                  2+2y'^2+2yy''=frac{-2}{sqrt{(3-2x)^2}} Rightarrow y''(1)=frac{-6}4=-frac32.$$






                  share|cite|improve this answer









                  $endgroup$



                  Alternatively:
                  $$xleft(frac{pi}{2}right)=1; yleft(frac{pi}{2}right)=2;\
                  x=2cos t-cos 2t Rightarrow cos^2t-2cos t+x-1=0 Rightarrow cos t=frac12-frac{sqrt{3-2x}}2;\
                  x^2+y^2=5-4cos t=5-2+2sqrt{3-2x};\
                  2x+2yy'=frac{-2}{sqrt{3-2x}} Rightarrow y'(1)=-1;\
                  2+2y'^2+2yy''=frac{-2}{sqrt{(3-2x)^2}} Rightarrow y''(1)=frac{-6}4=-frac32.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 25 '18 at 18:47









                  farruhotafarruhota

                  20.4k2739




                  20.4k2739






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052187%2fif-x-2-cos-t-cos-2t-y-2-sin-t-sin-2t-find-the-value-of-fracd2ydx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Ellipse (mathématiques)

                      Quarter-circle Tiles

                      Mont Emei