Schubert class in the Grassmannian G(3,6)












1












$begingroup$


How to compute the Schubert class $sigma$$^2$$_2$$_1$ in the Grassmannian G(3,6)?



I remember the result is $sigma$$_3$$_3$ + 2$sigma$$_3$$_2$$_1$ + $sigma$$_2$$_2$$_2$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    In maple with(schubert) grass(3, 6, c) Gc[relations_] yields the ideal I use in M2 below. sigma33 := schur([3, 3], Qc) sigma321 := schur([3, 2, 1], Qc) sigma222 := schur([2, 2, 2], Qc) sigma33+2*sigma321+sigma222 yields c2^3. sigma21 := schur([2, 1], Qc) and sigma21^2 yields (c1*c2-c3)^2. Now in M2 R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}] I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6) (c_2^3-(c_1*c_2-c_3)^2)%I yields 0: at least your memory checks out.
    $endgroup$
    – Jan-Magnus Økland
    Sep 15 '18 at 11:54










  • $begingroup$
    Thanks, but I want to work by hand, if it is not too complicated.
    $endgroup$
    – Strongart
    Sep 15 '18 at 14:05










  • $begingroup$
    These lecture notes perform this calculation (see figure 5).
    $endgroup$
    – Jan-Magnus Økland
    Sep 17 '18 at 6:06
















1












$begingroup$


How to compute the Schubert class $sigma$$^2$$_2$$_1$ in the Grassmannian G(3,6)?



I remember the result is $sigma$$_3$$_3$ + 2$sigma$$_3$$_2$$_1$ + $sigma$$_2$$_2$$_2$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    In maple with(schubert) grass(3, 6, c) Gc[relations_] yields the ideal I use in M2 below. sigma33 := schur([3, 3], Qc) sigma321 := schur([3, 2, 1], Qc) sigma222 := schur([2, 2, 2], Qc) sigma33+2*sigma321+sigma222 yields c2^3. sigma21 := schur([2, 1], Qc) and sigma21^2 yields (c1*c2-c3)^2. Now in M2 R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}] I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6) (c_2^3-(c_1*c_2-c_3)^2)%I yields 0: at least your memory checks out.
    $endgroup$
    – Jan-Magnus Økland
    Sep 15 '18 at 11:54










  • $begingroup$
    Thanks, but I want to work by hand, if it is not too complicated.
    $endgroup$
    – Strongart
    Sep 15 '18 at 14:05










  • $begingroup$
    These lecture notes perform this calculation (see figure 5).
    $endgroup$
    – Jan-Magnus Økland
    Sep 17 '18 at 6:06














1












1








1


0



$begingroup$


How to compute the Schubert class $sigma$$^2$$_2$$_1$ in the Grassmannian G(3,6)?



I remember the result is $sigma$$_3$$_3$ + 2$sigma$$_3$$_2$$_1$ + $sigma$$_2$$_2$$_2$.










share|cite|improve this question











$endgroup$




How to compute the Schubert class $sigma$$^2$$_2$$_1$ in the Grassmannian G(3,6)?



I remember the result is $sigma$$_3$$_3$ + 2$sigma$$_3$$_2$$_1$ + $sigma$$_2$$_2$$_2$.







algebraic-geometry intersection-theory grassmannian schubert-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 25 '18 at 13:17









Matt Samuel

38.5k63768




38.5k63768










asked Sep 15 '18 at 4:59









StrongartStrongart

1,8991430




1,8991430












  • $begingroup$
    In maple with(schubert) grass(3, 6, c) Gc[relations_] yields the ideal I use in M2 below. sigma33 := schur([3, 3], Qc) sigma321 := schur([3, 2, 1], Qc) sigma222 := schur([2, 2, 2], Qc) sigma33+2*sigma321+sigma222 yields c2^3. sigma21 := schur([2, 1], Qc) and sigma21^2 yields (c1*c2-c3)^2. Now in M2 R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}] I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6) (c_2^3-(c_1*c_2-c_3)^2)%I yields 0: at least your memory checks out.
    $endgroup$
    – Jan-Magnus Økland
    Sep 15 '18 at 11:54










  • $begingroup$
    Thanks, but I want to work by hand, if it is not too complicated.
    $endgroup$
    – Strongart
    Sep 15 '18 at 14:05










  • $begingroup$
    These lecture notes perform this calculation (see figure 5).
    $endgroup$
    – Jan-Magnus Økland
    Sep 17 '18 at 6:06


















  • $begingroup$
    In maple with(schubert) grass(3, 6, c) Gc[relations_] yields the ideal I use in M2 below. sigma33 := schur([3, 3], Qc) sigma321 := schur([3, 2, 1], Qc) sigma222 := schur([2, 2, 2], Qc) sigma33+2*sigma321+sigma222 yields c2^3. sigma21 := schur([2, 1], Qc) and sigma21^2 yields (c1*c2-c3)^2. Now in M2 R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}] I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6) (c_2^3-(c_1*c_2-c_3)^2)%I yields 0: at least your memory checks out.
    $endgroup$
    – Jan-Magnus Økland
    Sep 15 '18 at 11:54










  • $begingroup$
    Thanks, but I want to work by hand, if it is not too complicated.
    $endgroup$
    – Strongart
    Sep 15 '18 at 14:05










  • $begingroup$
    These lecture notes perform this calculation (see figure 5).
    $endgroup$
    – Jan-Magnus Økland
    Sep 17 '18 at 6:06
















$begingroup$
In maple with(schubert) grass(3, 6, c) Gc[relations_] yields the ideal I use in M2 below. sigma33 := schur([3, 3], Qc) sigma321 := schur([3, 2, 1], Qc) sigma222 := schur([2, 2, 2], Qc) sigma33+2*sigma321+sigma222 yields c2^3. sigma21 := schur([2, 1], Qc) and sigma21^2 yields (c1*c2-c3)^2. Now in M2 R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}] I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6) (c_2^3-(c_1*c_2-c_3)^2)%I yields 0: at least your memory checks out.
$endgroup$
– Jan-Magnus Økland
Sep 15 '18 at 11:54




$begingroup$
In maple with(schubert) grass(3, 6, c) Gc[relations_] yields the ideal I use in M2 below. sigma33 := schur([3, 3], Qc) sigma321 := schur([3, 2, 1], Qc) sigma222 := schur([2, 2, 2], Qc) sigma33+2*sigma321+sigma222 yields c2^3. sigma21 := schur([2, 1], Qc) and sigma21^2 yields (c1*c2-c3)^2. Now in M2 R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}] I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6) (c_2^3-(c_1*c_2-c_3)^2)%I yields 0: at least your memory checks out.
$endgroup$
– Jan-Magnus Økland
Sep 15 '18 at 11:54












$begingroup$
Thanks, but I want to work by hand, if it is not too complicated.
$endgroup$
– Strongart
Sep 15 '18 at 14:05




$begingroup$
Thanks, but I want to work by hand, if it is not too complicated.
$endgroup$
– Strongart
Sep 15 '18 at 14:05












$begingroup$
These lecture notes perform this calculation (see figure 5).
$endgroup$
– Jan-Magnus Økland
Sep 17 '18 at 6:06




$begingroup$
These lecture notes perform this calculation (see figure 5).
$endgroup$
– Jan-Magnus Økland
Sep 17 '18 at 6:06










1 Answer
1






active

oldest

votes


















3












$begingroup$

Note that $sigma_{2,1} = sigma_2cdotsigma_1 - sigma_3$, hence
$$
sigma_{2,1}^2 = sigma_{2,1}cdotsigma_2cdotsigma_1 - sigma_{2,1}cdotsigma_3.
$$
By Pieri rule
$$
sigma_{2,1}cdotsigma_2cdotsigma_1 = (sigma_{3,2} + sigma_{3,1,1} + sigma_{2,2,1})cdotsigma_1 = sigma_{3,3} + 3sigma_{3,2,1}+sigma_{2,2,2},
$$
while
$$
sigma_{2,1}cdotsigma_3 = sigma_{3,2,1}.
$$
Subtracting, you get the result.



Alternatively, one can directly use the Littlewood-Richardson rule.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2917505%2fschubert-class-in-the-grassmannian-g3-6%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Note that $sigma_{2,1} = sigma_2cdotsigma_1 - sigma_3$, hence
    $$
    sigma_{2,1}^2 = sigma_{2,1}cdotsigma_2cdotsigma_1 - sigma_{2,1}cdotsigma_3.
    $$
    By Pieri rule
    $$
    sigma_{2,1}cdotsigma_2cdotsigma_1 = (sigma_{3,2} + sigma_{3,1,1} + sigma_{2,2,1})cdotsigma_1 = sigma_{3,3} + 3sigma_{3,2,1}+sigma_{2,2,2},
    $$
    while
    $$
    sigma_{2,1}cdotsigma_3 = sigma_{3,2,1}.
    $$
    Subtracting, you get the result.



    Alternatively, one can directly use the Littlewood-Richardson rule.






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      Note that $sigma_{2,1} = sigma_2cdotsigma_1 - sigma_3$, hence
      $$
      sigma_{2,1}^2 = sigma_{2,1}cdotsigma_2cdotsigma_1 - sigma_{2,1}cdotsigma_3.
      $$
      By Pieri rule
      $$
      sigma_{2,1}cdotsigma_2cdotsigma_1 = (sigma_{3,2} + sigma_{3,1,1} + sigma_{2,2,1})cdotsigma_1 = sigma_{3,3} + 3sigma_{3,2,1}+sigma_{2,2,2},
      $$
      while
      $$
      sigma_{2,1}cdotsigma_3 = sigma_{3,2,1}.
      $$
      Subtracting, you get the result.



      Alternatively, one can directly use the Littlewood-Richardson rule.






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Note that $sigma_{2,1} = sigma_2cdotsigma_1 - sigma_3$, hence
        $$
        sigma_{2,1}^2 = sigma_{2,1}cdotsigma_2cdotsigma_1 - sigma_{2,1}cdotsigma_3.
        $$
        By Pieri rule
        $$
        sigma_{2,1}cdotsigma_2cdotsigma_1 = (sigma_{3,2} + sigma_{3,1,1} + sigma_{2,2,1})cdotsigma_1 = sigma_{3,3} + 3sigma_{3,2,1}+sigma_{2,2,2},
        $$
        while
        $$
        sigma_{2,1}cdotsigma_3 = sigma_{3,2,1}.
        $$
        Subtracting, you get the result.



        Alternatively, one can directly use the Littlewood-Richardson rule.






        share|cite|improve this answer









        $endgroup$



        Note that $sigma_{2,1} = sigma_2cdotsigma_1 - sigma_3$, hence
        $$
        sigma_{2,1}^2 = sigma_{2,1}cdotsigma_2cdotsigma_1 - sigma_{2,1}cdotsigma_3.
        $$
        By Pieri rule
        $$
        sigma_{2,1}cdotsigma_2cdotsigma_1 = (sigma_{3,2} + sigma_{3,1,1} + sigma_{2,2,1})cdotsigma_1 = sigma_{3,3} + 3sigma_{3,2,1}+sigma_{2,2,2},
        $$
        while
        $$
        sigma_{2,1}cdotsigma_3 = sigma_{3,2,1}.
        $$
        Subtracting, you get the result.



        Alternatively, one can directly use the Littlewood-Richardson rule.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 17 '18 at 6:54









        SashaSasha

        5,053139




        5,053139






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2917505%2fschubert-class-in-the-grassmannian-g3-6%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei