Schubert class in the Grassmannian G(3,6)
$begingroup$
How to compute the Schubert class $sigma$$^2$$_2$$_1$ in the Grassmannian G(3,6)?
I remember the result is $sigma$$_3$$_3$ + 2$sigma$$_3$$_2$$_1$ + $sigma$$_2$$_2$$_2$.
algebraic-geometry intersection-theory grassmannian schubert-calculus
$endgroup$
add a comment |
$begingroup$
How to compute the Schubert class $sigma$$^2$$_2$$_1$ in the Grassmannian G(3,6)?
I remember the result is $sigma$$_3$$_3$ + 2$sigma$$_3$$_2$$_1$ + $sigma$$_2$$_2$$_2$.
algebraic-geometry intersection-theory grassmannian schubert-calculus
$endgroup$
$begingroup$
In maplewith(schubert)
grass(3, 6, c)
Gc[relations_]
yields the ideal I use in M2 below.sigma33 := schur([3, 3], Qc)
sigma321 := schur([3, 2, 1], Qc)
sigma222 := schur([2, 2, 2], Qc)
sigma33+2*sigma321+sigma222
yieldsc2^3
.sigma21 := schur([2, 1], Qc)
andsigma21^2
yields(c1*c2-c3)^2
. Now in M2R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}]
I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6)
(c_2^3-(c_1*c_2-c_3)^2)%I
yields0
: at least your memory checks out.
$endgroup$
– Jan-Magnus Økland
Sep 15 '18 at 11:54
$begingroup$
Thanks, but I want to work by hand, if it is not too complicated.
$endgroup$
– Strongart
Sep 15 '18 at 14:05
$begingroup$
These lecture notes perform this calculation (see figure 5).
$endgroup$
– Jan-Magnus Økland
Sep 17 '18 at 6:06
add a comment |
$begingroup$
How to compute the Schubert class $sigma$$^2$$_2$$_1$ in the Grassmannian G(3,6)?
I remember the result is $sigma$$_3$$_3$ + 2$sigma$$_3$$_2$$_1$ + $sigma$$_2$$_2$$_2$.
algebraic-geometry intersection-theory grassmannian schubert-calculus
$endgroup$
How to compute the Schubert class $sigma$$^2$$_2$$_1$ in the Grassmannian G(3,6)?
I remember the result is $sigma$$_3$$_3$ + 2$sigma$$_3$$_2$$_1$ + $sigma$$_2$$_2$$_2$.
algebraic-geometry intersection-theory grassmannian schubert-calculus
algebraic-geometry intersection-theory grassmannian schubert-calculus
edited Dec 25 '18 at 13:17
Matt Samuel
38.5k63768
38.5k63768
asked Sep 15 '18 at 4:59
StrongartStrongart
1,8991430
1,8991430
$begingroup$
In maplewith(schubert)
grass(3, 6, c)
Gc[relations_]
yields the ideal I use in M2 below.sigma33 := schur([3, 3], Qc)
sigma321 := schur([3, 2, 1], Qc)
sigma222 := schur([2, 2, 2], Qc)
sigma33+2*sigma321+sigma222
yieldsc2^3
.sigma21 := schur([2, 1], Qc)
andsigma21^2
yields(c1*c2-c3)^2
. Now in M2R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}]
I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6)
(c_2^3-(c_1*c_2-c_3)^2)%I
yields0
: at least your memory checks out.
$endgroup$
– Jan-Magnus Økland
Sep 15 '18 at 11:54
$begingroup$
Thanks, but I want to work by hand, if it is not too complicated.
$endgroup$
– Strongart
Sep 15 '18 at 14:05
$begingroup$
These lecture notes perform this calculation (see figure 5).
$endgroup$
– Jan-Magnus Økland
Sep 17 '18 at 6:06
add a comment |
$begingroup$
In maplewith(schubert)
grass(3, 6, c)
Gc[relations_]
yields the ideal I use in M2 below.sigma33 := schur([3, 3], Qc)
sigma321 := schur([3, 2, 1], Qc)
sigma222 := schur([2, 2, 2], Qc)
sigma33+2*sigma321+sigma222
yieldsc2^3
.sigma21 := schur([2, 1], Qc)
andsigma21^2
yields(c1*c2-c3)^2
. Now in M2R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}]
I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6)
(c_2^3-(c_1*c_2-c_3)^2)%I
yields0
: at least your memory checks out.
$endgroup$
– Jan-Magnus Økland
Sep 15 '18 at 11:54
$begingroup$
Thanks, but I want to work by hand, if it is not too complicated.
$endgroup$
– Strongart
Sep 15 '18 at 14:05
$begingroup$
These lecture notes perform this calculation (see figure 5).
$endgroup$
– Jan-Magnus Økland
Sep 17 '18 at 6:06
$begingroup$
In maple
with(schubert)
grass(3, 6, c)
Gc[relations_]
yields the ideal I use in M2 below. sigma33 := schur([3, 3], Qc)
sigma321 := schur([3, 2, 1], Qc)
sigma222 := schur([2, 2, 2], Qc)
sigma33+2*sigma321+sigma222
yields c2^3
. sigma21 := schur([2, 1], Qc)
and sigma21^2
yields (c1*c2-c3)^2
. Now in M2 R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}]
I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6)
(c_2^3-(c_1*c_2-c_3)^2)%I
yields 0
: at least your memory checks out.$endgroup$
– Jan-Magnus Økland
Sep 15 '18 at 11:54
$begingroup$
In maple
with(schubert)
grass(3, 6, c)
Gc[relations_]
yields the ideal I use in M2 below. sigma33 := schur([3, 3], Qc)
sigma321 := schur([3, 2, 1], Qc)
sigma222 := schur([2, 2, 2], Qc)
sigma33+2*sigma321+sigma222
yields c2^3
. sigma21 := schur([2, 1], Qc)
and sigma21^2
yields (c1*c2-c3)^2
. Now in M2 R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}]
I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6)
(c_2^3-(c_1*c_2-c_3)^2)%I
yields 0
: at least your memory checks out.$endgroup$
– Jan-Magnus Økland
Sep 15 '18 at 11:54
$begingroup$
Thanks, but I want to work by hand, if it is not too complicated.
$endgroup$
– Strongart
Sep 15 '18 at 14:05
$begingroup$
Thanks, but I want to work by hand, if it is not too complicated.
$endgroup$
– Strongart
Sep 15 '18 at 14:05
$begingroup$
These lecture notes perform this calculation (see figure 5).
$endgroup$
– Jan-Magnus Økland
Sep 17 '18 at 6:06
$begingroup$
These lecture notes perform this calculation (see figure 5).
$endgroup$
– Jan-Magnus Økland
Sep 17 '18 at 6:06
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that $sigma_{2,1} = sigma_2cdotsigma_1 - sigma_3$, hence
$$
sigma_{2,1}^2 = sigma_{2,1}cdotsigma_2cdotsigma_1 - sigma_{2,1}cdotsigma_3.
$$
By Pieri rule
$$
sigma_{2,1}cdotsigma_2cdotsigma_1 = (sigma_{3,2} + sigma_{3,1,1} + sigma_{2,2,1})cdotsigma_1 = sigma_{3,3} + 3sigma_{3,2,1}+sigma_{2,2,2},
$$
while
$$
sigma_{2,1}cdotsigma_3 = sigma_{3,2,1}.
$$
Subtracting, you get the result.
Alternatively, one can directly use the Littlewood-Richardson rule.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2917505%2fschubert-class-in-the-grassmannian-g3-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $sigma_{2,1} = sigma_2cdotsigma_1 - sigma_3$, hence
$$
sigma_{2,1}^2 = sigma_{2,1}cdotsigma_2cdotsigma_1 - sigma_{2,1}cdotsigma_3.
$$
By Pieri rule
$$
sigma_{2,1}cdotsigma_2cdotsigma_1 = (sigma_{3,2} + sigma_{3,1,1} + sigma_{2,2,1})cdotsigma_1 = sigma_{3,3} + 3sigma_{3,2,1}+sigma_{2,2,2},
$$
while
$$
sigma_{2,1}cdotsigma_3 = sigma_{3,2,1}.
$$
Subtracting, you get the result.
Alternatively, one can directly use the Littlewood-Richardson rule.
$endgroup$
add a comment |
$begingroup$
Note that $sigma_{2,1} = sigma_2cdotsigma_1 - sigma_3$, hence
$$
sigma_{2,1}^2 = sigma_{2,1}cdotsigma_2cdotsigma_1 - sigma_{2,1}cdotsigma_3.
$$
By Pieri rule
$$
sigma_{2,1}cdotsigma_2cdotsigma_1 = (sigma_{3,2} + sigma_{3,1,1} + sigma_{2,2,1})cdotsigma_1 = sigma_{3,3} + 3sigma_{3,2,1}+sigma_{2,2,2},
$$
while
$$
sigma_{2,1}cdotsigma_3 = sigma_{3,2,1}.
$$
Subtracting, you get the result.
Alternatively, one can directly use the Littlewood-Richardson rule.
$endgroup$
add a comment |
$begingroup$
Note that $sigma_{2,1} = sigma_2cdotsigma_1 - sigma_3$, hence
$$
sigma_{2,1}^2 = sigma_{2,1}cdotsigma_2cdotsigma_1 - sigma_{2,1}cdotsigma_3.
$$
By Pieri rule
$$
sigma_{2,1}cdotsigma_2cdotsigma_1 = (sigma_{3,2} + sigma_{3,1,1} + sigma_{2,2,1})cdotsigma_1 = sigma_{3,3} + 3sigma_{3,2,1}+sigma_{2,2,2},
$$
while
$$
sigma_{2,1}cdotsigma_3 = sigma_{3,2,1}.
$$
Subtracting, you get the result.
Alternatively, one can directly use the Littlewood-Richardson rule.
$endgroup$
Note that $sigma_{2,1} = sigma_2cdotsigma_1 - sigma_3$, hence
$$
sigma_{2,1}^2 = sigma_{2,1}cdotsigma_2cdotsigma_1 - sigma_{2,1}cdotsigma_3.
$$
By Pieri rule
$$
sigma_{2,1}cdotsigma_2cdotsigma_1 = (sigma_{3,2} + sigma_{3,1,1} + sigma_{2,2,1})cdotsigma_1 = sigma_{3,3} + 3sigma_{3,2,1}+sigma_{2,2,2},
$$
while
$$
sigma_{2,1}cdotsigma_3 = sigma_{3,2,1}.
$$
Subtracting, you get the result.
Alternatively, one can directly use the Littlewood-Richardson rule.
answered Sep 17 '18 at 6:54
SashaSasha
5,053139
5,053139
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2917505%2fschubert-class-in-the-grassmannian-g3-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
In maple
with(schubert)
grass(3, 6, c)
Gc[relations_]
yields the ideal I use in M2 below.sigma33 := schur([3, 3], Qc)
sigma321 := schur([3, 2, 1], Qc)
sigma222 := schur([2, 2, 2], Qc)
sigma33+2*sigma321+sigma222
yieldsc2^3
.sigma21 := schur([2, 1], Qc)
andsigma21^2
yields(c1*c2-c3)^2
. Now in M2R=ZZ[c_1,c_2,c_3,Degrees=>{1,2,3}]
I=ideal(2*c_1*c_3+c_2^2-3*c_2*c_1^2+c_1^4, 2*c_3*c_2-3*c_3*c_1^2-3*c_1*c_2^2+4*c_2*c_1^3-c_1^5, c_3^2-6*c_3*c_1*c_2+4*c_3*c_1^3-c_2^3+6*c_2^2*c_1^2-5*c_2*c_1^4+c_1^6)
(c_2^3-(c_1*c_2-c_3)^2)%I
yields0
: at least your memory checks out.$endgroup$
– Jan-Magnus Økland
Sep 15 '18 at 11:54
$begingroup$
Thanks, but I want to work by hand, if it is not too complicated.
$endgroup$
– Strongart
Sep 15 '18 at 14:05
$begingroup$
These lecture notes perform this calculation (see figure 5).
$endgroup$
– Jan-Magnus Økland
Sep 17 '18 at 6:06