sum of an infinite series $sum_{k=1}^infty left( prod_{m=1}^kfrac{1}{1+mgamma}right) $











up vote
4
down vote

favorite
2












I am trying to find a closed form expression of
$$
sum_{k=1}^infty left( prod_{m=1}^kfrac{1}{1+mgamma}right)
$$

where $gamma>1$.



I've been trying this for a long time. Is there an easy way to tackle this problem? Any hint will be extremely helpful. Thanks!



Edit: changing variable name because $i$ stands form the imaginary constant.










share|cite|improve this question
























  • Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
    – Carl Schildkraut
    Nov 14 at 18:04












  • Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
    – huighlh
    Nov 14 at 18:19








  • 1




    A continued fraction representation can be obtained from Euler's continued fraction formula
    – Paul Enta
    Nov 14 at 18:25






  • 3




    The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
    – achille hui
    Nov 14 at 18:30










  • Thanks so much! @achillehui
    – huighlh
    Nov 14 at 18:41















up vote
4
down vote

favorite
2












I am trying to find a closed form expression of
$$
sum_{k=1}^infty left( prod_{m=1}^kfrac{1}{1+mgamma}right)
$$

where $gamma>1$.



I've been trying this for a long time. Is there an easy way to tackle this problem? Any hint will be extremely helpful. Thanks!



Edit: changing variable name because $i$ stands form the imaginary constant.










share|cite|improve this question
























  • Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
    – Carl Schildkraut
    Nov 14 at 18:04












  • Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
    – huighlh
    Nov 14 at 18:19








  • 1




    A continued fraction representation can be obtained from Euler's continued fraction formula
    – Paul Enta
    Nov 14 at 18:25






  • 3




    The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
    – achille hui
    Nov 14 at 18:30










  • Thanks so much! @achillehui
    – huighlh
    Nov 14 at 18:41













up vote
4
down vote

favorite
2









up vote
4
down vote

favorite
2






2





I am trying to find a closed form expression of
$$
sum_{k=1}^infty left( prod_{m=1}^kfrac{1}{1+mgamma}right)
$$

where $gamma>1$.



I've been trying this for a long time. Is there an easy way to tackle this problem? Any hint will be extremely helpful. Thanks!



Edit: changing variable name because $i$ stands form the imaginary constant.










share|cite|improve this question















I am trying to find a closed form expression of
$$
sum_{k=1}^infty left( prod_{m=1}^kfrac{1}{1+mgamma}right)
$$

where $gamma>1$.



I've been trying this for a long time. Is there an easy way to tackle this problem? Any hint will be extremely helpful. Thanks!



Edit: changing variable name because $i$ stands form the imaginary constant.







sequences-and-series summation closed-form products






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 22 at 18:16









Batominovski

33.5k33292




33.5k33292










asked Nov 14 at 17:56









huighlh

686




686












  • Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
    – Carl Schildkraut
    Nov 14 at 18:04












  • Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
    – huighlh
    Nov 14 at 18:19








  • 1




    A continued fraction representation can be obtained from Euler's continued fraction formula
    – Paul Enta
    Nov 14 at 18:25






  • 3




    The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
    – achille hui
    Nov 14 at 18:30










  • Thanks so much! @achillehui
    – huighlh
    Nov 14 at 18:41


















  • Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
    – Carl Schildkraut
    Nov 14 at 18:04












  • Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
    – huighlh
    Nov 14 at 18:19








  • 1




    A continued fraction representation can be obtained from Euler's continued fraction formula
    – Paul Enta
    Nov 14 at 18:25






  • 3




    The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
    – achille hui
    Nov 14 at 18:30










  • Thanks so much! @achillehui
    – huighlh
    Nov 14 at 18:41
















Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
– Carl Schildkraut
Nov 14 at 18:04






Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
– Carl Schildkraut
Nov 14 at 18:04














Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
– huighlh
Nov 14 at 18:19






Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
– huighlh
Nov 14 at 18:19






1




1




A continued fraction representation can be obtained from Euler's continued fraction formula
– Paul Enta
Nov 14 at 18:25




A continued fraction representation can be obtained from Euler's continued fraction formula
– Paul Enta
Nov 14 at 18:25




3




3




The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
– achille hui
Nov 14 at 18:30




The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
– achille hui
Nov 14 at 18:30












Thanks so much! @achillehui
– huighlh
Nov 14 at 18:41




Thanks so much! @achillehui
– huighlh
Nov 14 at 18:41










2 Answers
2






active

oldest

votes

















up vote
3
down vote



accepted










First let's see the product:



$P=prodlimits_{m=1}^{k}big({1+mgamma}big)^{-1}=gamma^{-k}prodlimits_{m=1}^kbig(frac{1}{gamma}+mbig)^{-1}=gamma^{-(k+1)}prodlimits_{m=0}^kbig(frac{1}{gamma}+mbig)^{-1}$



Using the fact that $Gamma(z)= frac{Gamma(z+n+1)}{z(z+1)....(z+n)}$ we have:



$P=gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}$



Return to the original expression and use the factorial form inside the sum:



$S=sumlimits_{k=1}^infty gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}=Gamma(1+frac{1}{gamma})sumlimits_{k=1}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$



$S=-1+Gamma(1+frac{1}{gamma})sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$



On the other hand we have to know that:



$Gamma_L(s,x)=x^s Gamma(s) e^{-x}sumlimits_{k=0}^infty frac{x^k}{Gamma({1+s+k})}$, where $Gamma_L(s,x)$ is the lower incomplete gamma function.



Let $s=frac{1}{gamma}$ and $x=frac{1}{gamma}$ we can express the:



$sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}=gamma^{frac{1}{gamma}}e^{frac{1}{gamma}} frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}$



Substiture back into the last expression of S we get:



$S=(gamma e)^{frac{1}{gamma}}frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}Gamma(1+frac{1}{gamma})-1$



We could reach further simplifications if we use the recurrance relation of lower incomplete gamma function:



$Gamma_L(s+1,x)=sGamma_L(s,x)-x^s e^{-x}$



Finally we have that:



$S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$



We can check it in $gamma=1$ and $infty$ places:




  • If $gamma rightarrow infty$ then easy to see $S rightarrow 0$ $big(Gamma_L(1,0)=0big)$


  • If $gamma rightarrow 1$ then $Srightarrow eGamma_L(2,1)$



$Gamma_L(2,1)$ can be calculated by the definition of lower incomplete gamma function:



$Gamma_L(2,1)=int limits_0^1 te^{-t}dt=-2e^{-1}+1$



So $Srightarrow e-2$






share|cite|improve this answer





















  • (+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
    – robjohn
    Nov 22 at 19:57










  • @robjohn Thank you,
    – JV.Stalker
    Nov 22 at 21:07


















up vote
3
down vote













$$
begin{align}
sum_{k=1}^inftyleft(prod_{m=1}^kfrac1{1+mgamma}right)
&=sum_{k=1}^inftygamma^{-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}\
&=frac1gammasum_{k=1}^inftygamma^{1-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}frac{Gamma(k)}{(k-1)!}\
&=frac1gammasum_{k=1}^inftyfrac{gamma^{1-k}}{(k-1)!}int_0^1t^{k-1}(1-t)^{1/gamma},mathrm{d}t\[3pt]
&=frac1gammaint_0^1e^{t/gamma}(1-t)^{1/gamma},mathrm{d}t\[6pt]
&=frac{e^{1/gamma}}gammaint_0^1e^{-t/gamma}t^{1/gamma},mathrm{d}t\
&=(egamma)^{1/gamma}int_0^{1/gamma}e^{-t}t^{1/gamma},mathrm{d}t\[6pt]
&=(egamma)^{1/gamma}Gamma!left(tfrac1gamma+1,gammaright)
end{align}
$$

where the two variable $Gamma(a,b)=int_0^be^{-t}t^{a-1},mathrm{d}t$ is the Lower Incomplete Gamma Function.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998595%2fsum-of-an-infinite-series-sum-k-1-infty-left-prod-m-1k-frac11m-ga%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    3
    down vote



    accepted










    First let's see the product:



    $P=prodlimits_{m=1}^{k}big({1+mgamma}big)^{-1}=gamma^{-k}prodlimits_{m=1}^kbig(frac{1}{gamma}+mbig)^{-1}=gamma^{-(k+1)}prodlimits_{m=0}^kbig(frac{1}{gamma}+mbig)^{-1}$



    Using the fact that $Gamma(z)= frac{Gamma(z+n+1)}{z(z+1)....(z+n)}$ we have:



    $P=gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}$



    Return to the original expression and use the factorial form inside the sum:



    $S=sumlimits_{k=1}^infty gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}=Gamma(1+frac{1}{gamma})sumlimits_{k=1}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$



    $S=-1+Gamma(1+frac{1}{gamma})sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$



    On the other hand we have to know that:



    $Gamma_L(s,x)=x^s Gamma(s) e^{-x}sumlimits_{k=0}^infty frac{x^k}{Gamma({1+s+k})}$, where $Gamma_L(s,x)$ is the lower incomplete gamma function.



    Let $s=frac{1}{gamma}$ and $x=frac{1}{gamma}$ we can express the:



    $sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}=gamma^{frac{1}{gamma}}e^{frac{1}{gamma}} frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}$



    Substiture back into the last expression of S we get:



    $S=(gamma e)^{frac{1}{gamma}}frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}Gamma(1+frac{1}{gamma})-1$



    We could reach further simplifications if we use the recurrance relation of lower incomplete gamma function:



    $Gamma_L(s+1,x)=sGamma_L(s,x)-x^s e^{-x}$



    Finally we have that:



    $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$



    We can check it in $gamma=1$ and $infty$ places:




    • If $gamma rightarrow infty$ then easy to see $S rightarrow 0$ $big(Gamma_L(1,0)=0big)$


    • If $gamma rightarrow 1$ then $Srightarrow eGamma_L(2,1)$



    $Gamma_L(2,1)$ can be calculated by the definition of lower incomplete gamma function:



    $Gamma_L(2,1)=int limits_0^1 te^{-t}dt=-2e^{-1}+1$



    So $Srightarrow e-2$






    share|cite|improve this answer





















    • (+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
      – robjohn
      Nov 22 at 19:57










    • @robjohn Thank you,
      – JV.Stalker
      Nov 22 at 21:07















    up vote
    3
    down vote



    accepted










    First let's see the product:



    $P=prodlimits_{m=1}^{k}big({1+mgamma}big)^{-1}=gamma^{-k}prodlimits_{m=1}^kbig(frac{1}{gamma}+mbig)^{-1}=gamma^{-(k+1)}prodlimits_{m=0}^kbig(frac{1}{gamma}+mbig)^{-1}$



    Using the fact that $Gamma(z)= frac{Gamma(z+n+1)}{z(z+1)....(z+n)}$ we have:



    $P=gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}$



    Return to the original expression and use the factorial form inside the sum:



    $S=sumlimits_{k=1}^infty gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}=Gamma(1+frac{1}{gamma})sumlimits_{k=1}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$



    $S=-1+Gamma(1+frac{1}{gamma})sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$



    On the other hand we have to know that:



    $Gamma_L(s,x)=x^s Gamma(s) e^{-x}sumlimits_{k=0}^infty frac{x^k}{Gamma({1+s+k})}$, where $Gamma_L(s,x)$ is the lower incomplete gamma function.



    Let $s=frac{1}{gamma}$ and $x=frac{1}{gamma}$ we can express the:



    $sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}=gamma^{frac{1}{gamma}}e^{frac{1}{gamma}} frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}$



    Substiture back into the last expression of S we get:



    $S=(gamma e)^{frac{1}{gamma}}frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}Gamma(1+frac{1}{gamma})-1$



    We could reach further simplifications if we use the recurrance relation of lower incomplete gamma function:



    $Gamma_L(s+1,x)=sGamma_L(s,x)-x^s e^{-x}$



    Finally we have that:



    $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$



    We can check it in $gamma=1$ and $infty$ places:




    • If $gamma rightarrow infty$ then easy to see $S rightarrow 0$ $big(Gamma_L(1,0)=0big)$


    • If $gamma rightarrow 1$ then $Srightarrow eGamma_L(2,1)$



    $Gamma_L(2,1)$ can be calculated by the definition of lower incomplete gamma function:



    $Gamma_L(2,1)=int limits_0^1 te^{-t}dt=-2e^{-1}+1$



    So $Srightarrow e-2$






    share|cite|improve this answer





















    • (+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
      – robjohn
      Nov 22 at 19:57










    • @robjohn Thank you,
      – JV.Stalker
      Nov 22 at 21:07













    up vote
    3
    down vote



    accepted







    up vote
    3
    down vote



    accepted






    First let's see the product:



    $P=prodlimits_{m=1}^{k}big({1+mgamma}big)^{-1}=gamma^{-k}prodlimits_{m=1}^kbig(frac{1}{gamma}+mbig)^{-1}=gamma^{-(k+1)}prodlimits_{m=0}^kbig(frac{1}{gamma}+mbig)^{-1}$



    Using the fact that $Gamma(z)= frac{Gamma(z+n+1)}{z(z+1)....(z+n)}$ we have:



    $P=gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}$



    Return to the original expression and use the factorial form inside the sum:



    $S=sumlimits_{k=1}^infty gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}=Gamma(1+frac{1}{gamma})sumlimits_{k=1}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$



    $S=-1+Gamma(1+frac{1}{gamma})sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$



    On the other hand we have to know that:



    $Gamma_L(s,x)=x^s Gamma(s) e^{-x}sumlimits_{k=0}^infty frac{x^k}{Gamma({1+s+k})}$, where $Gamma_L(s,x)$ is the lower incomplete gamma function.



    Let $s=frac{1}{gamma}$ and $x=frac{1}{gamma}$ we can express the:



    $sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}=gamma^{frac{1}{gamma}}e^{frac{1}{gamma}} frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}$



    Substiture back into the last expression of S we get:



    $S=(gamma e)^{frac{1}{gamma}}frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}Gamma(1+frac{1}{gamma})-1$



    We could reach further simplifications if we use the recurrance relation of lower incomplete gamma function:



    $Gamma_L(s+1,x)=sGamma_L(s,x)-x^s e^{-x}$



    Finally we have that:



    $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$



    We can check it in $gamma=1$ and $infty$ places:




    • If $gamma rightarrow infty$ then easy to see $S rightarrow 0$ $big(Gamma_L(1,0)=0big)$


    • If $gamma rightarrow 1$ then $Srightarrow eGamma_L(2,1)$



    $Gamma_L(2,1)$ can be calculated by the definition of lower incomplete gamma function:



    $Gamma_L(2,1)=int limits_0^1 te^{-t}dt=-2e^{-1}+1$



    So $Srightarrow e-2$






    share|cite|improve this answer












    First let's see the product:



    $P=prodlimits_{m=1}^{k}big({1+mgamma}big)^{-1}=gamma^{-k}prodlimits_{m=1}^kbig(frac{1}{gamma}+mbig)^{-1}=gamma^{-(k+1)}prodlimits_{m=0}^kbig(frac{1}{gamma}+mbig)^{-1}$



    Using the fact that $Gamma(z)= frac{Gamma(z+n+1)}{z(z+1)....(z+n)}$ we have:



    $P=gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}$



    Return to the original expression and use the factorial form inside the sum:



    $S=sumlimits_{k=1}^infty gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}=Gamma(1+frac{1}{gamma})sumlimits_{k=1}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$



    $S=-1+Gamma(1+frac{1}{gamma})sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$



    On the other hand we have to know that:



    $Gamma_L(s,x)=x^s Gamma(s) e^{-x}sumlimits_{k=0}^infty frac{x^k}{Gamma({1+s+k})}$, where $Gamma_L(s,x)$ is the lower incomplete gamma function.



    Let $s=frac{1}{gamma}$ and $x=frac{1}{gamma}$ we can express the:



    $sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}=gamma^{frac{1}{gamma}}e^{frac{1}{gamma}} frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}$



    Substiture back into the last expression of S we get:



    $S=(gamma e)^{frac{1}{gamma}}frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}Gamma(1+frac{1}{gamma})-1$



    We could reach further simplifications if we use the recurrance relation of lower incomplete gamma function:



    $Gamma_L(s+1,x)=sGamma_L(s,x)-x^s e^{-x}$



    Finally we have that:



    $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$



    We can check it in $gamma=1$ and $infty$ places:




    • If $gamma rightarrow infty$ then easy to see $S rightarrow 0$ $big(Gamma_L(1,0)=0big)$


    • If $gamma rightarrow 1$ then $Srightarrow eGamma_L(2,1)$



    $Gamma_L(2,1)$ can be calculated by the definition of lower incomplete gamma function:



    $Gamma_L(2,1)=int limits_0^1 te^{-t}dt=-2e^{-1}+1$



    So $Srightarrow e-2$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 18 at 8:11









    JV.Stalker

    55639




    55639












    • (+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
      – robjohn
      Nov 22 at 19:57










    • @robjohn Thank you,
      – JV.Stalker
      Nov 22 at 21:07


















    • (+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
      – robjohn
      Nov 22 at 19:57










    • @robjohn Thank you,
      – JV.Stalker
      Nov 22 at 21:07
















    (+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
    – robjohn
    Nov 22 at 19:57




    (+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
    – robjohn
    Nov 22 at 19:57












    @robjohn Thank you,
    – JV.Stalker
    Nov 22 at 21:07




    @robjohn Thank you,
    – JV.Stalker
    Nov 22 at 21:07










    up vote
    3
    down vote













    $$
    begin{align}
    sum_{k=1}^inftyleft(prod_{m=1}^kfrac1{1+mgamma}right)
    &=sum_{k=1}^inftygamma^{-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}\
    &=frac1gammasum_{k=1}^inftygamma^{1-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}frac{Gamma(k)}{(k-1)!}\
    &=frac1gammasum_{k=1}^inftyfrac{gamma^{1-k}}{(k-1)!}int_0^1t^{k-1}(1-t)^{1/gamma},mathrm{d}t\[3pt]
    &=frac1gammaint_0^1e^{t/gamma}(1-t)^{1/gamma},mathrm{d}t\[6pt]
    &=frac{e^{1/gamma}}gammaint_0^1e^{-t/gamma}t^{1/gamma},mathrm{d}t\
    &=(egamma)^{1/gamma}int_0^{1/gamma}e^{-t}t^{1/gamma},mathrm{d}t\[6pt]
    &=(egamma)^{1/gamma}Gamma!left(tfrac1gamma+1,gammaright)
    end{align}
    $$

    where the two variable $Gamma(a,b)=int_0^be^{-t}t^{a-1},mathrm{d}t$ is the Lower Incomplete Gamma Function.






    share|cite|improve this answer



























      up vote
      3
      down vote













      $$
      begin{align}
      sum_{k=1}^inftyleft(prod_{m=1}^kfrac1{1+mgamma}right)
      &=sum_{k=1}^inftygamma^{-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}\
      &=frac1gammasum_{k=1}^inftygamma^{1-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}frac{Gamma(k)}{(k-1)!}\
      &=frac1gammasum_{k=1}^inftyfrac{gamma^{1-k}}{(k-1)!}int_0^1t^{k-1}(1-t)^{1/gamma},mathrm{d}t\[3pt]
      &=frac1gammaint_0^1e^{t/gamma}(1-t)^{1/gamma},mathrm{d}t\[6pt]
      &=frac{e^{1/gamma}}gammaint_0^1e^{-t/gamma}t^{1/gamma},mathrm{d}t\
      &=(egamma)^{1/gamma}int_0^{1/gamma}e^{-t}t^{1/gamma},mathrm{d}t\[6pt]
      &=(egamma)^{1/gamma}Gamma!left(tfrac1gamma+1,gammaright)
      end{align}
      $$

      where the two variable $Gamma(a,b)=int_0^be^{-t}t^{a-1},mathrm{d}t$ is the Lower Incomplete Gamma Function.






      share|cite|improve this answer

























        up vote
        3
        down vote










        up vote
        3
        down vote









        $$
        begin{align}
        sum_{k=1}^inftyleft(prod_{m=1}^kfrac1{1+mgamma}right)
        &=sum_{k=1}^inftygamma^{-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}\
        &=frac1gammasum_{k=1}^inftygamma^{1-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}frac{Gamma(k)}{(k-1)!}\
        &=frac1gammasum_{k=1}^inftyfrac{gamma^{1-k}}{(k-1)!}int_0^1t^{k-1}(1-t)^{1/gamma},mathrm{d}t\[3pt]
        &=frac1gammaint_0^1e^{t/gamma}(1-t)^{1/gamma},mathrm{d}t\[6pt]
        &=frac{e^{1/gamma}}gammaint_0^1e^{-t/gamma}t^{1/gamma},mathrm{d}t\
        &=(egamma)^{1/gamma}int_0^{1/gamma}e^{-t}t^{1/gamma},mathrm{d}t\[6pt]
        &=(egamma)^{1/gamma}Gamma!left(tfrac1gamma+1,gammaright)
        end{align}
        $$

        where the two variable $Gamma(a,b)=int_0^be^{-t}t^{a-1},mathrm{d}t$ is the Lower Incomplete Gamma Function.






        share|cite|improve this answer














        $$
        begin{align}
        sum_{k=1}^inftyleft(prod_{m=1}^kfrac1{1+mgamma}right)
        &=sum_{k=1}^inftygamma^{-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}\
        &=frac1gammasum_{k=1}^inftygamma^{1-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}frac{Gamma(k)}{(k-1)!}\
        &=frac1gammasum_{k=1}^inftyfrac{gamma^{1-k}}{(k-1)!}int_0^1t^{k-1}(1-t)^{1/gamma},mathrm{d}t\[3pt]
        &=frac1gammaint_0^1e^{t/gamma}(1-t)^{1/gamma},mathrm{d}t\[6pt]
        &=frac{e^{1/gamma}}gammaint_0^1e^{-t/gamma}t^{1/gamma},mathrm{d}t\
        &=(egamma)^{1/gamma}int_0^{1/gamma}e^{-t}t^{1/gamma},mathrm{d}t\[6pt]
        &=(egamma)^{1/gamma}Gamma!left(tfrac1gamma+1,gammaright)
        end{align}
        $$

        where the two variable $Gamma(a,b)=int_0^be^{-t}t^{a-1},mathrm{d}t$ is the Lower Incomplete Gamma Function.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 22 at 19:08

























        answered Nov 22 at 18:57









        robjohn

        263k27302623




        263k27302623






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998595%2fsum-of-an-infinite-series-sum-k-1-infty-left-prod-m-1k-frac11m-ga%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei