sum of an infinite series $sum_{k=1}^infty left( prod_{m=1}^kfrac{1}{1+mgamma}right) $
up vote
4
down vote
favorite
I am trying to find a closed form expression of
$$
sum_{k=1}^infty left( prod_{m=1}^kfrac{1}{1+mgamma}right)
$$
where $gamma>1$.
I've been trying this for a long time. Is there an easy way to tackle this problem? Any hint will be extremely helpful. Thanks!
Edit: changing variable name because $i$ stands form the imaginary constant.
sequences-and-series summation closed-form products
|
show 1 more comment
up vote
4
down vote
favorite
I am trying to find a closed form expression of
$$
sum_{k=1}^infty left( prod_{m=1}^kfrac{1}{1+mgamma}right)
$$
where $gamma>1$.
I've been trying this for a long time. Is there an easy way to tackle this problem? Any hint will be extremely helpful. Thanks!
Edit: changing variable name because $i$ stands form the imaginary constant.
sequences-and-series summation closed-form products
Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
– Carl Schildkraut
Nov 14 at 18:04
Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
– huighlh
Nov 14 at 18:19
1
A continued fraction representation can be obtained from Euler's continued fraction formula
– Paul Enta
Nov 14 at 18:25
3
The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
– achille hui
Nov 14 at 18:30
Thanks so much! @achillehui
– huighlh
Nov 14 at 18:41
|
show 1 more comment
up vote
4
down vote
favorite
up vote
4
down vote
favorite
I am trying to find a closed form expression of
$$
sum_{k=1}^infty left( prod_{m=1}^kfrac{1}{1+mgamma}right)
$$
where $gamma>1$.
I've been trying this for a long time. Is there an easy way to tackle this problem? Any hint will be extremely helpful. Thanks!
Edit: changing variable name because $i$ stands form the imaginary constant.
sequences-and-series summation closed-form products
I am trying to find a closed form expression of
$$
sum_{k=1}^infty left( prod_{m=1}^kfrac{1}{1+mgamma}right)
$$
where $gamma>1$.
I've been trying this for a long time. Is there an easy way to tackle this problem? Any hint will be extremely helpful. Thanks!
Edit: changing variable name because $i$ stands form the imaginary constant.
sequences-and-series summation closed-form products
sequences-and-series summation closed-form products
edited Nov 22 at 18:16
Batominovski
33.5k33292
33.5k33292
asked Nov 14 at 17:56
huighlh
686
686
Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
– Carl Schildkraut
Nov 14 at 18:04
Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
– huighlh
Nov 14 at 18:19
1
A continued fraction representation can be obtained from Euler's continued fraction formula
– Paul Enta
Nov 14 at 18:25
3
The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
– achille hui
Nov 14 at 18:30
Thanks so much! @achillehui
– huighlh
Nov 14 at 18:41
|
show 1 more comment
Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
– Carl Schildkraut
Nov 14 at 18:04
Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
– huighlh
Nov 14 at 18:19
1
A continued fraction representation can be obtained from Euler's continued fraction formula
– Paul Enta
Nov 14 at 18:25
3
The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
– achille hui
Nov 14 at 18:30
Thanks so much! @achillehui
– huighlh
Nov 14 at 18:41
Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
– Carl Schildkraut
Nov 14 at 18:04
Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
– Carl Schildkraut
Nov 14 at 18:04
Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
– huighlh
Nov 14 at 18:19
Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
– huighlh
Nov 14 at 18:19
1
1
A continued fraction representation can be obtained from Euler's continued fraction formula
– Paul Enta
Nov 14 at 18:25
A continued fraction representation can be obtained from Euler's continued fraction formula
– Paul Enta
Nov 14 at 18:25
3
3
The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
– achille hui
Nov 14 at 18:30
The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
– achille hui
Nov 14 at 18:30
Thanks so much! @achillehui
– huighlh
Nov 14 at 18:41
Thanks so much! @achillehui
– huighlh
Nov 14 at 18:41
|
show 1 more comment
2 Answers
2
active
oldest
votes
up vote
3
down vote
accepted
First let's see the product:
$P=prodlimits_{m=1}^{k}big({1+mgamma}big)^{-1}=gamma^{-k}prodlimits_{m=1}^kbig(frac{1}{gamma}+mbig)^{-1}=gamma^{-(k+1)}prodlimits_{m=0}^kbig(frac{1}{gamma}+mbig)^{-1}$
Using the fact that $Gamma(z)= frac{Gamma(z+n+1)}{z(z+1)....(z+n)}$ we have:
$P=gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}$
Return to the original expression and use the factorial form inside the sum:
$S=sumlimits_{k=1}^infty gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}=Gamma(1+frac{1}{gamma})sumlimits_{k=1}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$
$S=-1+Gamma(1+frac{1}{gamma})sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$
On the other hand we have to know that:
$Gamma_L(s,x)=x^s Gamma(s) e^{-x}sumlimits_{k=0}^infty frac{x^k}{Gamma({1+s+k})}$, where $Gamma_L(s,x)$ is the lower incomplete gamma function.
Let $s=frac{1}{gamma}$ and $x=frac{1}{gamma}$ we can express the:
$sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}=gamma^{frac{1}{gamma}}e^{frac{1}{gamma}} frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}$
Substiture back into the last expression of S we get:
$S=(gamma e)^{frac{1}{gamma}}frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}Gamma(1+frac{1}{gamma})-1$
We could reach further simplifications if we use the recurrance relation of lower incomplete gamma function:
$Gamma_L(s+1,x)=sGamma_L(s,x)-x^s e^{-x}$
Finally we have that:
$S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$
We can check it in $gamma=1$ and $infty$ places:
If $gamma rightarrow infty$ then easy to see $S rightarrow 0$ $big(Gamma_L(1,0)=0big)$
If $gamma rightarrow 1$ then $Srightarrow eGamma_L(2,1)$
$Gamma_L(2,1)$ can be calculated by the definition of lower incomplete gamma function:
$Gamma_L(2,1)=int limits_0^1 te^{-t}dt=-2e^{-1}+1$
So $Srightarrow e-2$
(+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
– robjohn♦
Nov 22 at 19:57
@robjohn Thank you,
– JV.Stalker
Nov 22 at 21:07
add a comment |
up vote
3
down vote
$$
begin{align}
sum_{k=1}^inftyleft(prod_{m=1}^kfrac1{1+mgamma}right)
&=sum_{k=1}^inftygamma^{-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}\
&=frac1gammasum_{k=1}^inftygamma^{1-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}frac{Gamma(k)}{(k-1)!}\
&=frac1gammasum_{k=1}^inftyfrac{gamma^{1-k}}{(k-1)!}int_0^1t^{k-1}(1-t)^{1/gamma},mathrm{d}t\[3pt]
&=frac1gammaint_0^1e^{t/gamma}(1-t)^{1/gamma},mathrm{d}t\[6pt]
&=frac{e^{1/gamma}}gammaint_0^1e^{-t/gamma}t^{1/gamma},mathrm{d}t\
&=(egamma)^{1/gamma}int_0^{1/gamma}e^{-t}t^{1/gamma},mathrm{d}t\[6pt]
&=(egamma)^{1/gamma}Gamma!left(tfrac1gamma+1,gammaright)
end{align}
$$
where the two variable $Gamma(a,b)=int_0^be^{-t}t^{a-1},mathrm{d}t$ is the Lower Incomplete Gamma Function.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998595%2fsum-of-an-infinite-series-sum-k-1-infty-left-prod-m-1k-frac11m-ga%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
First let's see the product:
$P=prodlimits_{m=1}^{k}big({1+mgamma}big)^{-1}=gamma^{-k}prodlimits_{m=1}^kbig(frac{1}{gamma}+mbig)^{-1}=gamma^{-(k+1)}prodlimits_{m=0}^kbig(frac{1}{gamma}+mbig)^{-1}$
Using the fact that $Gamma(z)= frac{Gamma(z+n+1)}{z(z+1)....(z+n)}$ we have:
$P=gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}$
Return to the original expression and use the factorial form inside the sum:
$S=sumlimits_{k=1}^infty gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}=Gamma(1+frac{1}{gamma})sumlimits_{k=1}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$
$S=-1+Gamma(1+frac{1}{gamma})sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$
On the other hand we have to know that:
$Gamma_L(s,x)=x^s Gamma(s) e^{-x}sumlimits_{k=0}^infty frac{x^k}{Gamma({1+s+k})}$, where $Gamma_L(s,x)$ is the lower incomplete gamma function.
Let $s=frac{1}{gamma}$ and $x=frac{1}{gamma}$ we can express the:
$sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}=gamma^{frac{1}{gamma}}e^{frac{1}{gamma}} frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}$
Substiture back into the last expression of S we get:
$S=(gamma e)^{frac{1}{gamma}}frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}Gamma(1+frac{1}{gamma})-1$
We could reach further simplifications if we use the recurrance relation of lower incomplete gamma function:
$Gamma_L(s+1,x)=sGamma_L(s,x)-x^s e^{-x}$
Finally we have that:
$S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$
We can check it in $gamma=1$ and $infty$ places:
If $gamma rightarrow infty$ then easy to see $S rightarrow 0$ $big(Gamma_L(1,0)=0big)$
If $gamma rightarrow 1$ then $Srightarrow eGamma_L(2,1)$
$Gamma_L(2,1)$ can be calculated by the definition of lower incomplete gamma function:
$Gamma_L(2,1)=int limits_0^1 te^{-t}dt=-2e^{-1}+1$
So $Srightarrow e-2$
(+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
– robjohn♦
Nov 22 at 19:57
@robjohn Thank you,
– JV.Stalker
Nov 22 at 21:07
add a comment |
up vote
3
down vote
accepted
First let's see the product:
$P=prodlimits_{m=1}^{k}big({1+mgamma}big)^{-1}=gamma^{-k}prodlimits_{m=1}^kbig(frac{1}{gamma}+mbig)^{-1}=gamma^{-(k+1)}prodlimits_{m=0}^kbig(frac{1}{gamma}+mbig)^{-1}$
Using the fact that $Gamma(z)= frac{Gamma(z+n+1)}{z(z+1)....(z+n)}$ we have:
$P=gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}$
Return to the original expression and use the factorial form inside the sum:
$S=sumlimits_{k=1}^infty gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}=Gamma(1+frac{1}{gamma})sumlimits_{k=1}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$
$S=-1+Gamma(1+frac{1}{gamma})sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$
On the other hand we have to know that:
$Gamma_L(s,x)=x^s Gamma(s) e^{-x}sumlimits_{k=0}^infty frac{x^k}{Gamma({1+s+k})}$, where $Gamma_L(s,x)$ is the lower incomplete gamma function.
Let $s=frac{1}{gamma}$ and $x=frac{1}{gamma}$ we can express the:
$sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}=gamma^{frac{1}{gamma}}e^{frac{1}{gamma}} frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}$
Substiture back into the last expression of S we get:
$S=(gamma e)^{frac{1}{gamma}}frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}Gamma(1+frac{1}{gamma})-1$
We could reach further simplifications if we use the recurrance relation of lower incomplete gamma function:
$Gamma_L(s+1,x)=sGamma_L(s,x)-x^s e^{-x}$
Finally we have that:
$S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$
We can check it in $gamma=1$ and $infty$ places:
If $gamma rightarrow infty$ then easy to see $S rightarrow 0$ $big(Gamma_L(1,0)=0big)$
If $gamma rightarrow 1$ then $Srightarrow eGamma_L(2,1)$
$Gamma_L(2,1)$ can be calculated by the definition of lower incomplete gamma function:
$Gamma_L(2,1)=int limits_0^1 te^{-t}dt=-2e^{-1}+1$
So $Srightarrow e-2$
(+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
– robjohn♦
Nov 22 at 19:57
@robjohn Thank you,
– JV.Stalker
Nov 22 at 21:07
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
First let's see the product:
$P=prodlimits_{m=1}^{k}big({1+mgamma}big)^{-1}=gamma^{-k}prodlimits_{m=1}^kbig(frac{1}{gamma}+mbig)^{-1}=gamma^{-(k+1)}prodlimits_{m=0}^kbig(frac{1}{gamma}+mbig)^{-1}$
Using the fact that $Gamma(z)= frac{Gamma(z+n+1)}{z(z+1)....(z+n)}$ we have:
$P=gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}$
Return to the original expression and use the factorial form inside the sum:
$S=sumlimits_{k=1}^infty gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}=Gamma(1+frac{1}{gamma})sumlimits_{k=1}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$
$S=-1+Gamma(1+frac{1}{gamma})sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$
On the other hand we have to know that:
$Gamma_L(s,x)=x^s Gamma(s) e^{-x}sumlimits_{k=0}^infty frac{x^k}{Gamma({1+s+k})}$, where $Gamma_L(s,x)$ is the lower incomplete gamma function.
Let $s=frac{1}{gamma}$ and $x=frac{1}{gamma}$ we can express the:
$sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}=gamma^{frac{1}{gamma}}e^{frac{1}{gamma}} frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}$
Substiture back into the last expression of S we get:
$S=(gamma e)^{frac{1}{gamma}}frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}Gamma(1+frac{1}{gamma})-1$
We could reach further simplifications if we use the recurrance relation of lower incomplete gamma function:
$Gamma_L(s+1,x)=sGamma_L(s,x)-x^s e^{-x}$
Finally we have that:
$S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$
We can check it in $gamma=1$ and $infty$ places:
If $gamma rightarrow infty$ then easy to see $S rightarrow 0$ $big(Gamma_L(1,0)=0big)$
If $gamma rightarrow 1$ then $Srightarrow eGamma_L(2,1)$
$Gamma_L(2,1)$ can be calculated by the definition of lower incomplete gamma function:
$Gamma_L(2,1)=int limits_0^1 te^{-t}dt=-2e^{-1}+1$
So $Srightarrow e-2$
First let's see the product:
$P=prodlimits_{m=1}^{k}big({1+mgamma}big)^{-1}=gamma^{-k}prodlimits_{m=1}^kbig(frac{1}{gamma}+mbig)^{-1}=gamma^{-(k+1)}prodlimits_{m=0}^kbig(frac{1}{gamma}+mbig)^{-1}$
Using the fact that $Gamma(z)= frac{Gamma(z+n+1)}{z(z+1)....(z+n)}$ we have:
$P=gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}$
Return to the original expression and use the factorial form inside the sum:
$S=sumlimits_{k=1}^infty gamma^{-(k+1)}frac{Gamma(frac{1}{gamma})}{Gamma(frac{1}{gamma}+k+1)}=Gamma(1+frac{1}{gamma})sumlimits_{k=1}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$
$S=-1+Gamma(1+frac{1}{gamma})sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}$
On the other hand we have to know that:
$Gamma_L(s,x)=x^s Gamma(s) e^{-x}sumlimits_{k=0}^infty frac{x^k}{Gamma({1+s+k})}$, where $Gamma_L(s,x)$ is the lower incomplete gamma function.
Let $s=frac{1}{gamma}$ and $x=frac{1}{gamma}$ we can express the:
$sumlimits_{k=0}^infty frac{(frac{1}{gamma})^k}{Gamma({1+frac{1}{gamma}+k})}=gamma^{frac{1}{gamma}}e^{frac{1}{gamma}} frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}$
Substiture back into the last expression of S we get:
$S=(gamma e)^{frac{1}{gamma}}frac{Gamma_L(frac{1}{gamma},frac{1}{gamma})}{Gamma(frac{1}{gamma})}Gamma(1+frac{1}{gamma})-1$
We could reach further simplifications if we use the recurrance relation of lower incomplete gamma function:
$Gamma_L(s+1,x)=sGamma_L(s,x)-x^s e^{-x}$
Finally we have that:
$S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$
We can check it in $gamma=1$ and $infty$ places:
If $gamma rightarrow infty$ then easy to see $S rightarrow 0$ $big(Gamma_L(1,0)=0big)$
If $gamma rightarrow 1$ then $Srightarrow eGamma_L(2,1)$
$Gamma_L(2,1)$ can be calculated by the definition of lower incomplete gamma function:
$Gamma_L(2,1)=int limits_0^1 te^{-t}dt=-2e^{-1}+1$
So $Srightarrow e-2$
answered Nov 18 at 8:11
JV.Stalker
55639
55639
(+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
– robjohn♦
Nov 22 at 19:57
@robjohn Thank you,
– JV.Stalker
Nov 22 at 21:07
add a comment |
(+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
– robjohn♦
Nov 22 at 19:57
@robjohn Thank you,
– JV.Stalker
Nov 22 at 21:07
(+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
– robjohn♦
Nov 22 at 19:57
(+1) I didn't notice $S=(gamma e)^{frac{1}{gamma}}Gamma_L(1+frac{1}{gamma},frac{1}{gamma})$ in your answer until I searched more carefully.
– robjohn♦
Nov 22 at 19:57
@robjohn Thank you,
– JV.Stalker
Nov 22 at 21:07
@robjohn Thank you,
– JV.Stalker
Nov 22 at 21:07
add a comment |
up vote
3
down vote
$$
begin{align}
sum_{k=1}^inftyleft(prod_{m=1}^kfrac1{1+mgamma}right)
&=sum_{k=1}^inftygamma^{-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}\
&=frac1gammasum_{k=1}^inftygamma^{1-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}frac{Gamma(k)}{(k-1)!}\
&=frac1gammasum_{k=1}^inftyfrac{gamma^{1-k}}{(k-1)!}int_0^1t^{k-1}(1-t)^{1/gamma},mathrm{d}t\[3pt]
&=frac1gammaint_0^1e^{t/gamma}(1-t)^{1/gamma},mathrm{d}t\[6pt]
&=frac{e^{1/gamma}}gammaint_0^1e^{-t/gamma}t^{1/gamma},mathrm{d}t\
&=(egamma)^{1/gamma}int_0^{1/gamma}e^{-t}t^{1/gamma},mathrm{d}t\[6pt]
&=(egamma)^{1/gamma}Gamma!left(tfrac1gamma+1,gammaright)
end{align}
$$
where the two variable $Gamma(a,b)=int_0^be^{-t}t^{a-1},mathrm{d}t$ is the Lower Incomplete Gamma Function.
add a comment |
up vote
3
down vote
$$
begin{align}
sum_{k=1}^inftyleft(prod_{m=1}^kfrac1{1+mgamma}right)
&=sum_{k=1}^inftygamma^{-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}\
&=frac1gammasum_{k=1}^inftygamma^{1-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}frac{Gamma(k)}{(k-1)!}\
&=frac1gammasum_{k=1}^inftyfrac{gamma^{1-k}}{(k-1)!}int_0^1t^{k-1}(1-t)^{1/gamma},mathrm{d}t\[3pt]
&=frac1gammaint_0^1e^{t/gamma}(1-t)^{1/gamma},mathrm{d}t\[6pt]
&=frac{e^{1/gamma}}gammaint_0^1e^{-t/gamma}t^{1/gamma},mathrm{d}t\
&=(egamma)^{1/gamma}int_0^{1/gamma}e^{-t}t^{1/gamma},mathrm{d}t\[6pt]
&=(egamma)^{1/gamma}Gamma!left(tfrac1gamma+1,gammaright)
end{align}
$$
where the two variable $Gamma(a,b)=int_0^be^{-t}t^{a-1},mathrm{d}t$ is the Lower Incomplete Gamma Function.
add a comment |
up vote
3
down vote
up vote
3
down vote
$$
begin{align}
sum_{k=1}^inftyleft(prod_{m=1}^kfrac1{1+mgamma}right)
&=sum_{k=1}^inftygamma^{-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}\
&=frac1gammasum_{k=1}^inftygamma^{1-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}frac{Gamma(k)}{(k-1)!}\
&=frac1gammasum_{k=1}^inftyfrac{gamma^{1-k}}{(k-1)!}int_0^1t^{k-1}(1-t)^{1/gamma},mathrm{d}t\[3pt]
&=frac1gammaint_0^1e^{t/gamma}(1-t)^{1/gamma},mathrm{d}t\[6pt]
&=frac{e^{1/gamma}}gammaint_0^1e^{-t/gamma}t^{1/gamma},mathrm{d}t\
&=(egamma)^{1/gamma}int_0^{1/gamma}e^{-t}t^{1/gamma},mathrm{d}t\[6pt]
&=(egamma)^{1/gamma}Gamma!left(tfrac1gamma+1,gammaright)
end{align}
$$
where the two variable $Gamma(a,b)=int_0^be^{-t}t^{a-1},mathrm{d}t$ is the Lower Incomplete Gamma Function.
$$
begin{align}
sum_{k=1}^inftyleft(prod_{m=1}^kfrac1{1+mgamma}right)
&=sum_{k=1}^inftygamma^{-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}\
&=frac1gammasum_{k=1}^inftygamma^{1-k}frac{Gamma!left(frac1gamma+1right)}{Gamma!left(k+frac1gamma+1right)}frac{Gamma(k)}{(k-1)!}\
&=frac1gammasum_{k=1}^inftyfrac{gamma^{1-k}}{(k-1)!}int_0^1t^{k-1}(1-t)^{1/gamma},mathrm{d}t\[3pt]
&=frac1gammaint_0^1e^{t/gamma}(1-t)^{1/gamma},mathrm{d}t\[6pt]
&=frac{e^{1/gamma}}gammaint_0^1e^{-t/gamma}t^{1/gamma},mathrm{d}t\
&=(egamma)^{1/gamma}int_0^{1/gamma}e^{-t}t^{1/gamma},mathrm{d}t\[6pt]
&=(egamma)^{1/gamma}Gamma!left(tfrac1gamma+1,gammaright)
end{align}
$$
where the two variable $Gamma(a,b)=int_0^be^{-t}t^{a-1},mathrm{d}t$ is the Lower Incomplete Gamma Function.
edited Nov 22 at 19:08
answered Nov 22 at 18:57
robjohn♦
263k27302623
263k27302623
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998595%2fsum-of-an-infinite-series-sum-k-1-infty-left-prod-m-1k-frac11m-ga%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Where did this come up? Do you have reason to believe it has a closed form? Also, what techniques have you tried to use to solve this problem?
– Carl Schildkraut
Nov 14 at 18:04
Thanks! This came up when I was trying to calculate the steady state probability of a Markov Chain. I am not sure whether the closed form exists, and I am pretty new to combinatorics/series. To be honest I tried to break down the terms or find some links to the binomial coefficients, but all efforts failed. Any help will be extremely appreciated. @CarlSchildkraut
– huighlh
Nov 14 at 18:19
1
A continued fraction representation can be obtained from Euler's continued fraction formula
– Paul Enta
Nov 14 at 18:25
3
The sum equals to ${}_1F_1left(1;frac{1}{gamma}+1;frac{1}{gamma}right) - 1$. where ${}_1F_1(a;b;z)$ is a generialized hypergeometric function (also known as confluent hypergeometric function of the first kind $M(a;b;z)$ ). For the few cases I tested, WA suggest this can be expressed in terms of gamma and incomplete gamma function.
– achille hui
Nov 14 at 18:30
Thanks so much! @achillehui
– huighlh
Nov 14 at 18:41