Existence of infimum on the set of equivalence classes











up vote
0
down vote

favorite












Let $Q$ be a complete lattice.



Let $sim$ be an equivalence relation on $Q$ conforming to the axiom $$(f_0sim f_1wedge g_0sim g_1wedge f_0leq g_0)Rightarrow f_1leq g_1.$$



Define the order on the set $Q/sim$ of equivalence classes in the obvious way.



Now let $S$ be a (nonempty) set of equivalence classes. Is it true that the infimum $inf S$ necessarily exists and $inf S=[inf_{Xin S} A_X]$ where $A_Xin X$ for every equivalence class $X$?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    Let $Q$ be a complete lattice.



    Let $sim$ be an equivalence relation on $Q$ conforming to the axiom $$(f_0sim f_1wedge g_0sim g_1wedge f_0leq g_0)Rightarrow f_1leq g_1.$$



    Define the order on the set $Q/sim$ of equivalence classes in the obvious way.



    Now let $S$ be a (nonempty) set of equivalence classes. Is it true that the infimum $inf S$ necessarily exists and $inf S=[inf_{Xin S} A_X]$ where $A_Xin X$ for every equivalence class $X$?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let $Q$ be a complete lattice.



      Let $sim$ be an equivalence relation on $Q$ conforming to the axiom $$(f_0sim f_1wedge g_0sim g_1wedge f_0leq g_0)Rightarrow f_1leq g_1.$$



      Define the order on the set $Q/sim$ of equivalence classes in the obvious way.



      Now let $S$ be a (nonempty) set of equivalence classes. Is it true that the infimum $inf S$ necessarily exists and $inf S=[inf_{Xin S} A_X]$ where $A_Xin X$ for every equivalence class $X$?










      share|cite|improve this question













      Let $Q$ be a complete lattice.



      Let $sim$ be an equivalence relation on $Q$ conforming to the axiom $$(f_0sim f_1wedge g_0sim g_1wedge f_0leq g_0)Rightarrow f_1leq g_1.$$



      Define the order on the set $Q/sim$ of equivalence classes in the obvious way.



      Now let $S$ be a (nonempty) set of equivalence classes. Is it true that the infimum $inf S$ necessarily exists and $inf S=[inf_{Xin S} A_X]$ where $A_Xin X$ for every equivalence class $X$?







      order-theory equivalence-relations lattice-orders






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 15 at 18:48









      porton

      1,86011127




      1,86011127






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          $[inf_{Xin S}A_X]leq X$ for every $Xin S$ because $inf_{Xin S}A_Xleq A_X$.



          Suppose an equivalence class $Lleq X$ for every $Xin S$.



          Take $lin L$. We have $lleq A_X$; $lleqinf_{Xin S}A_X$; $Lleq[inf_{Xin S}A_X]$.



          Thus $[inf_{Xin S}A_X]$ is the greatest lower bound of $S$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000112%2fexistence-of-infimum-on-the-set-of-equivalence-classes%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote



            accepted










            $[inf_{Xin S}A_X]leq X$ for every $Xin S$ because $inf_{Xin S}A_Xleq A_X$.



            Suppose an equivalence class $Lleq X$ for every $Xin S$.



            Take $lin L$. We have $lleq A_X$; $lleqinf_{Xin S}A_X$; $Lleq[inf_{Xin S}A_X]$.



            Thus $[inf_{Xin S}A_X]$ is the greatest lower bound of $S$.






            share|cite|improve this answer

























              up vote
              0
              down vote



              accepted










              $[inf_{Xin S}A_X]leq X$ for every $Xin S$ because $inf_{Xin S}A_Xleq A_X$.



              Suppose an equivalence class $Lleq X$ for every $Xin S$.



              Take $lin L$. We have $lleq A_X$; $lleqinf_{Xin S}A_X$; $Lleq[inf_{Xin S}A_X]$.



              Thus $[inf_{Xin S}A_X]$ is the greatest lower bound of $S$.






              share|cite|improve this answer























                up vote
                0
                down vote



                accepted







                up vote
                0
                down vote



                accepted






                $[inf_{Xin S}A_X]leq X$ for every $Xin S$ because $inf_{Xin S}A_Xleq A_X$.



                Suppose an equivalence class $Lleq X$ for every $Xin S$.



                Take $lin L$. We have $lleq A_X$; $lleqinf_{Xin S}A_X$; $Lleq[inf_{Xin S}A_X]$.



                Thus $[inf_{Xin S}A_X]$ is the greatest lower bound of $S$.






                share|cite|improve this answer












                $[inf_{Xin S}A_X]leq X$ for every $Xin S$ because $inf_{Xin S}A_Xleq A_X$.



                Suppose an equivalence class $Lleq X$ for every $Xin S$.



                Take $lin L$. We have $lleq A_X$; $lleqinf_{Xin S}A_X$; $Lleq[inf_{Xin S}A_X]$.



                Thus $[inf_{Xin S}A_X]$ is the greatest lower bound of $S$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 15 at 19:17









                porton

                1,86011127




                1,86011127






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000112%2fexistence-of-infimum-on-the-set-of-equivalence-classes%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei