How to solve the recursive equation $y^{(n+2)} +(n+1)y^{(n+1)} +tfrac{n(n+1)}{2} y^{(n)}=0$
up vote
1
down vote
favorite
I encounter the problem when I try to get the Taylor series of $arctan x$ at $x=1$. It seems that the method for expanding it at $x=0$ does not work anymore (which is obtained by observing that $arctan' x=frac{1}{1+x^2}=sum_{n=0}^infty (-1)^n x^{2n}$, and then integration over the convergence domain).
So I try to compute the derivatives at $x=1$: Note that if we set $y(x)=arctan x$, then
$$y'=frac{1}{1+x^2},quad y''=frac{-2x}{(1+x^2)^2}implies
(1+x^2)y''=-2x y'.$$
By Leibniz rule, taking derivative of order $n$ at both side, we have
$$
y^{(n+2)}(1)+(n+1)y^{(n+1)}(1)+frac{n(n+1)}{2} y^{(n)}(1)=0.
$$
It is easy to show
$$
y(1)=pi/4,quad y'(1)=1/2,quad y''(1)=-1/2,quad y'''(1)=1/2,quad y''''(1)=0.
$$
I don't know how to get a general formula from the above recursive equation, any ideas?
In fact, I am also searching for a general theory about recursive equations, any reference there?
sequences-and-series reference-request taylor-expansion recursion analytic-functions
add a comment |
up vote
1
down vote
favorite
I encounter the problem when I try to get the Taylor series of $arctan x$ at $x=1$. It seems that the method for expanding it at $x=0$ does not work anymore (which is obtained by observing that $arctan' x=frac{1}{1+x^2}=sum_{n=0}^infty (-1)^n x^{2n}$, and then integration over the convergence domain).
So I try to compute the derivatives at $x=1$: Note that if we set $y(x)=arctan x$, then
$$y'=frac{1}{1+x^2},quad y''=frac{-2x}{(1+x^2)^2}implies
(1+x^2)y''=-2x y'.$$
By Leibniz rule, taking derivative of order $n$ at both side, we have
$$
y^{(n+2)}(1)+(n+1)y^{(n+1)}(1)+frac{n(n+1)}{2} y^{(n)}(1)=0.
$$
It is easy to show
$$
y(1)=pi/4,quad y'(1)=1/2,quad y''(1)=-1/2,quad y'''(1)=1/2,quad y''''(1)=0.
$$
I don't know how to get a general formula from the above recursive equation, any ideas?
In fact, I am also searching for a general theory about recursive equations, any reference there?
sequences-and-series reference-request taylor-expansion recursion analytic-functions
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I encounter the problem when I try to get the Taylor series of $arctan x$ at $x=1$. It seems that the method for expanding it at $x=0$ does not work anymore (which is obtained by observing that $arctan' x=frac{1}{1+x^2}=sum_{n=0}^infty (-1)^n x^{2n}$, and then integration over the convergence domain).
So I try to compute the derivatives at $x=1$: Note that if we set $y(x)=arctan x$, then
$$y'=frac{1}{1+x^2},quad y''=frac{-2x}{(1+x^2)^2}implies
(1+x^2)y''=-2x y'.$$
By Leibniz rule, taking derivative of order $n$ at both side, we have
$$
y^{(n+2)}(1)+(n+1)y^{(n+1)}(1)+frac{n(n+1)}{2} y^{(n)}(1)=0.
$$
It is easy to show
$$
y(1)=pi/4,quad y'(1)=1/2,quad y''(1)=-1/2,quad y'''(1)=1/2,quad y''''(1)=0.
$$
I don't know how to get a general formula from the above recursive equation, any ideas?
In fact, I am also searching for a general theory about recursive equations, any reference there?
sequences-and-series reference-request taylor-expansion recursion analytic-functions
I encounter the problem when I try to get the Taylor series of $arctan x$ at $x=1$. It seems that the method for expanding it at $x=0$ does not work anymore (which is obtained by observing that $arctan' x=frac{1}{1+x^2}=sum_{n=0}^infty (-1)^n x^{2n}$, and then integration over the convergence domain).
So I try to compute the derivatives at $x=1$: Note that if we set $y(x)=arctan x$, then
$$y'=frac{1}{1+x^2},quad y''=frac{-2x}{(1+x^2)^2}implies
(1+x^2)y''=-2x y'.$$
By Leibniz rule, taking derivative of order $n$ at both side, we have
$$
y^{(n+2)}(1)+(n+1)y^{(n+1)}(1)+frac{n(n+1)}{2} y^{(n)}(1)=0.
$$
It is easy to show
$$
y(1)=pi/4,quad y'(1)=1/2,quad y''(1)=-1/2,quad y'''(1)=1/2,quad y''''(1)=0.
$$
I don't know how to get a general formula from the above recursive equation, any ideas?
In fact, I am also searching for a general theory about recursive equations, any reference there?
sequences-and-series reference-request taylor-expansion recursion analytic-functions
sequences-and-series reference-request taylor-expansion recursion analytic-functions
edited Nov 18 at 15:33
Batominovski
31.8k23189
31.8k23189
asked Nov 18 at 14:32
van abel
659523
659523
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
If you simply want to find the Taylor series about $x=1$ of $text{arctan}(x)$, then you can use $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{1+x^2}=frac{1}{1+(z+1)^2}=frac{1}{2text{i}}left(frac{1}{1-text{i}+z}-frac{1}{1+text{i}+z}right),,$$
where $z:=x-1$. This gives
$$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{left(1+frac{z}{1-text{i}}right)^{-1}}{1-text{i}}-frac{left(1+frac{z}{1+text{i}}right)^{-1}}{1+text{i}}right),.$$
Therefore, if $|z|<sqrt{2}$, then
$$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1-text{i}}right)^{k}}{1-text{i}}-frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1+text{i}}right)^{k}}{1+text{i}}right),.$$
Simplifying this, we have
$$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,(-1)^k,left(frac{frac1{(1-text{i})^{k+1}}-frac{1}{(1+text{i})^{k+1}}}{2text{i}}right),(x-1)^k$$
for $xinmathbb{C}$ such that $|x-1|<sqrt{2}$.
Using $1pmtext{i}=sqrt{2},expleft(pmdfrac{text{i}pi}{4}right)$, we conclude that
$$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,frac{(-1)^k}{2^{frac{k+1}{2}}},sinleft(frac{(k+1)pi}{4}right),(x-1)^k$$
for all complex numbers $x$ with $|x-1|<sqrt{2}$.
Integrating the series above, we have
$$text{arctan}(x)=frac{pi}{4}+sum_{k=1}^{infty},frac{(-1)^{k-1}}{2^{frac{k}{2}},k},sinleft(frac{kpi}{4}right),(x-1)^k,.$$
for every $xinmathbb{C}$ such that $|x-1|<sqrt{2}$. In this way, it follows that
$$y^{(k)}(1)=begin{cases}frac{pi}{4}&text{if }k=0,,\
frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)&text{if }k=1,2,3,ldots,,
end{cases}$$
where $y(x):=text{arctan}(x)$.
However, if you really want to solve the recursion without the expansion above, then let $a_k:=dfrac{y^{(k)}(1)}{(k-1)!}$ for $k=1,2,3,ldots$. From
$$y^{(k+2)}(1)+(k+1),y^{(k+1)}(1)+frac{k(k+1)}{2},y^{(k)}(1)=0text{ for }k=1,2,3,ldots,,$$
we divide both sides by $(k+1)!$ to get
$$a_{k+2}+a_{k+1}+frac{1}{2},a_k=0text{ for }k=1,2,3,ldots,.$$
The characteristic polynomial of the recursion above is $lambda^2+lambda+dfrac{1}{2}$, whose roots are $dfrac{-1pmtext{i}}{2}$. Therefore, for $k=1,2,3,ldots$,
$$a_k=p,left(frac{-1+text{i}}{2}right)^k+q,left(frac{-1-text{i}}{2}right)^k$$
for some fixed $p,qinmathbb{C}$. Since $a_1=dfrac{1}{2}$ and $a_2=-dfrac{1}{2}$, we get $$p=+frac{text{i}}{2}text{ and }q=-frac{text{i}}{2},,$$
whence
$$y^{(k)}(1)=frac{left(frac{-1+text{i}}{2}right)^k-,left(frac{-1-text{i}}{2}right)^k}{2text{i}},(k-1)!=frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)$$
for $k=1,2,3,ldots$.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
If you simply want to find the Taylor series about $x=1$ of $text{arctan}(x)$, then you can use $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{1+x^2}=frac{1}{1+(z+1)^2}=frac{1}{2text{i}}left(frac{1}{1-text{i}+z}-frac{1}{1+text{i}+z}right),,$$
where $z:=x-1$. This gives
$$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{left(1+frac{z}{1-text{i}}right)^{-1}}{1-text{i}}-frac{left(1+frac{z}{1+text{i}}right)^{-1}}{1+text{i}}right),.$$
Therefore, if $|z|<sqrt{2}$, then
$$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1-text{i}}right)^{k}}{1-text{i}}-frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1+text{i}}right)^{k}}{1+text{i}}right),.$$
Simplifying this, we have
$$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,(-1)^k,left(frac{frac1{(1-text{i})^{k+1}}-frac{1}{(1+text{i})^{k+1}}}{2text{i}}right),(x-1)^k$$
for $xinmathbb{C}$ such that $|x-1|<sqrt{2}$.
Using $1pmtext{i}=sqrt{2},expleft(pmdfrac{text{i}pi}{4}right)$, we conclude that
$$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,frac{(-1)^k}{2^{frac{k+1}{2}}},sinleft(frac{(k+1)pi}{4}right),(x-1)^k$$
for all complex numbers $x$ with $|x-1|<sqrt{2}$.
Integrating the series above, we have
$$text{arctan}(x)=frac{pi}{4}+sum_{k=1}^{infty},frac{(-1)^{k-1}}{2^{frac{k}{2}},k},sinleft(frac{kpi}{4}right),(x-1)^k,.$$
for every $xinmathbb{C}$ such that $|x-1|<sqrt{2}$. In this way, it follows that
$$y^{(k)}(1)=begin{cases}frac{pi}{4}&text{if }k=0,,\
frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)&text{if }k=1,2,3,ldots,,
end{cases}$$
where $y(x):=text{arctan}(x)$.
However, if you really want to solve the recursion without the expansion above, then let $a_k:=dfrac{y^{(k)}(1)}{(k-1)!}$ for $k=1,2,3,ldots$. From
$$y^{(k+2)}(1)+(k+1),y^{(k+1)}(1)+frac{k(k+1)}{2},y^{(k)}(1)=0text{ for }k=1,2,3,ldots,,$$
we divide both sides by $(k+1)!$ to get
$$a_{k+2}+a_{k+1}+frac{1}{2},a_k=0text{ for }k=1,2,3,ldots,.$$
The characteristic polynomial of the recursion above is $lambda^2+lambda+dfrac{1}{2}$, whose roots are $dfrac{-1pmtext{i}}{2}$. Therefore, for $k=1,2,3,ldots$,
$$a_k=p,left(frac{-1+text{i}}{2}right)^k+q,left(frac{-1-text{i}}{2}right)^k$$
for some fixed $p,qinmathbb{C}$. Since $a_1=dfrac{1}{2}$ and $a_2=-dfrac{1}{2}$, we get $$p=+frac{text{i}}{2}text{ and }q=-frac{text{i}}{2},,$$
whence
$$y^{(k)}(1)=frac{left(frac{-1+text{i}}{2}right)^k-,left(frac{-1-text{i}}{2}right)^k}{2text{i}},(k-1)!=frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)$$
for $k=1,2,3,ldots$.
add a comment |
up vote
2
down vote
accepted
If you simply want to find the Taylor series about $x=1$ of $text{arctan}(x)$, then you can use $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{1+x^2}=frac{1}{1+(z+1)^2}=frac{1}{2text{i}}left(frac{1}{1-text{i}+z}-frac{1}{1+text{i}+z}right),,$$
where $z:=x-1$. This gives
$$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{left(1+frac{z}{1-text{i}}right)^{-1}}{1-text{i}}-frac{left(1+frac{z}{1+text{i}}right)^{-1}}{1+text{i}}right),.$$
Therefore, if $|z|<sqrt{2}$, then
$$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1-text{i}}right)^{k}}{1-text{i}}-frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1+text{i}}right)^{k}}{1+text{i}}right),.$$
Simplifying this, we have
$$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,(-1)^k,left(frac{frac1{(1-text{i})^{k+1}}-frac{1}{(1+text{i})^{k+1}}}{2text{i}}right),(x-1)^k$$
for $xinmathbb{C}$ such that $|x-1|<sqrt{2}$.
Using $1pmtext{i}=sqrt{2},expleft(pmdfrac{text{i}pi}{4}right)$, we conclude that
$$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,frac{(-1)^k}{2^{frac{k+1}{2}}},sinleft(frac{(k+1)pi}{4}right),(x-1)^k$$
for all complex numbers $x$ with $|x-1|<sqrt{2}$.
Integrating the series above, we have
$$text{arctan}(x)=frac{pi}{4}+sum_{k=1}^{infty},frac{(-1)^{k-1}}{2^{frac{k}{2}},k},sinleft(frac{kpi}{4}right),(x-1)^k,.$$
for every $xinmathbb{C}$ such that $|x-1|<sqrt{2}$. In this way, it follows that
$$y^{(k)}(1)=begin{cases}frac{pi}{4}&text{if }k=0,,\
frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)&text{if }k=1,2,3,ldots,,
end{cases}$$
where $y(x):=text{arctan}(x)$.
However, if you really want to solve the recursion without the expansion above, then let $a_k:=dfrac{y^{(k)}(1)}{(k-1)!}$ for $k=1,2,3,ldots$. From
$$y^{(k+2)}(1)+(k+1),y^{(k+1)}(1)+frac{k(k+1)}{2},y^{(k)}(1)=0text{ for }k=1,2,3,ldots,,$$
we divide both sides by $(k+1)!$ to get
$$a_{k+2}+a_{k+1}+frac{1}{2},a_k=0text{ for }k=1,2,3,ldots,.$$
The characteristic polynomial of the recursion above is $lambda^2+lambda+dfrac{1}{2}$, whose roots are $dfrac{-1pmtext{i}}{2}$. Therefore, for $k=1,2,3,ldots$,
$$a_k=p,left(frac{-1+text{i}}{2}right)^k+q,left(frac{-1-text{i}}{2}right)^k$$
for some fixed $p,qinmathbb{C}$. Since $a_1=dfrac{1}{2}$ and $a_2=-dfrac{1}{2}$, we get $$p=+frac{text{i}}{2}text{ and }q=-frac{text{i}}{2},,$$
whence
$$y^{(k)}(1)=frac{left(frac{-1+text{i}}{2}right)^k-,left(frac{-1-text{i}}{2}right)^k}{2text{i}},(k-1)!=frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)$$
for $k=1,2,3,ldots$.
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
If you simply want to find the Taylor series about $x=1$ of $text{arctan}(x)$, then you can use $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{1+x^2}=frac{1}{1+(z+1)^2}=frac{1}{2text{i}}left(frac{1}{1-text{i}+z}-frac{1}{1+text{i}+z}right),,$$
where $z:=x-1$. This gives
$$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{left(1+frac{z}{1-text{i}}right)^{-1}}{1-text{i}}-frac{left(1+frac{z}{1+text{i}}right)^{-1}}{1+text{i}}right),.$$
Therefore, if $|z|<sqrt{2}$, then
$$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1-text{i}}right)^{k}}{1-text{i}}-frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1+text{i}}right)^{k}}{1+text{i}}right),.$$
Simplifying this, we have
$$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,(-1)^k,left(frac{frac1{(1-text{i})^{k+1}}-frac{1}{(1+text{i})^{k+1}}}{2text{i}}right),(x-1)^k$$
for $xinmathbb{C}$ such that $|x-1|<sqrt{2}$.
Using $1pmtext{i}=sqrt{2},expleft(pmdfrac{text{i}pi}{4}right)$, we conclude that
$$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,frac{(-1)^k}{2^{frac{k+1}{2}}},sinleft(frac{(k+1)pi}{4}right),(x-1)^k$$
for all complex numbers $x$ with $|x-1|<sqrt{2}$.
Integrating the series above, we have
$$text{arctan}(x)=frac{pi}{4}+sum_{k=1}^{infty},frac{(-1)^{k-1}}{2^{frac{k}{2}},k},sinleft(frac{kpi}{4}right),(x-1)^k,.$$
for every $xinmathbb{C}$ such that $|x-1|<sqrt{2}$. In this way, it follows that
$$y^{(k)}(1)=begin{cases}frac{pi}{4}&text{if }k=0,,\
frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)&text{if }k=1,2,3,ldots,,
end{cases}$$
where $y(x):=text{arctan}(x)$.
However, if you really want to solve the recursion without the expansion above, then let $a_k:=dfrac{y^{(k)}(1)}{(k-1)!}$ for $k=1,2,3,ldots$. From
$$y^{(k+2)}(1)+(k+1),y^{(k+1)}(1)+frac{k(k+1)}{2},y^{(k)}(1)=0text{ for }k=1,2,3,ldots,,$$
we divide both sides by $(k+1)!$ to get
$$a_{k+2}+a_{k+1}+frac{1}{2},a_k=0text{ for }k=1,2,3,ldots,.$$
The characteristic polynomial of the recursion above is $lambda^2+lambda+dfrac{1}{2}$, whose roots are $dfrac{-1pmtext{i}}{2}$. Therefore, for $k=1,2,3,ldots$,
$$a_k=p,left(frac{-1+text{i}}{2}right)^k+q,left(frac{-1-text{i}}{2}right)^k$$
for some fixed $p,qinmathbb{C}$. Since $a_1=dfrac{1}{2}$ and $a_2=-dfrac{1}{2}$, we get $$p=+frac{text{i}}{2}text{ and }q=-frac{text{i}}{2},,$$
whence
$$y^{(k)}(1)=frac{left(frac{-1+text{i}}{2}right)^k-,left(frac{-1-text{i}}{2}right)^k}{2text{i}},(k-1)!=frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)$$
for $k=1,2,3,ldots$.
If you simply want to find the Taylor series about $x=1$ of $text{arctan}(x)$, then you can use $$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{1+x^2}=frac{1}{1+(z+1)^2}=frac{1}{2text{i}}left(frac{1}{1-text{i}+z}-frac{1}{1+text{i}+z}right),,$$
where $z:=x-1$. This gives
$$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{left(1+frac{z}{1-text{i}}right)^{-1}}{1-text{i}}-frac{left(1+frac{z}{1+text{i}}right)^{-1}}{1+text{i}}right),.$$
Therefore, if $|z|<sqrt{2}$, then
$$frac{text{d}}{text{d}x},text{arctan}(x)=frac{1}{2text{i}},left(frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1-text{i}}right)^{k}}{1-text{i}}-frac{sumlimits_{k=0}^infty,(-1)^k,left(frac{z}{1+text{i}}right)^{k}}{1+text{i}}right),.$$
Simplifying this, we have
$$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,(-1)^k,left(frac{frac1{(1-text{i})^{k+1}}-frac{1}{(1+text{i})^{k+1}}}{2text{i}}right),(x-1)^k$$
for $xinmathbb{C}$ such that $|x-1|<sqrt{2}$.
Using $1pmtext{i}=sqrt{2},expleft(pmdfrac{text{i}pi}{4}right)$, we conclude that
$$frac{text{d}}{text{d}x},text{arctan}(x)=sum_{k=0}^infty,frac{(-1)^k}{2^{frac{k+1}{2}}},sinleft(frac{(k+1)pi}{4}right),(x-1)^k$$
for all complex numbers $x$ with $|x-1|<sqrt{2}$.
Integrating the series above, we have
$$text{arctan}(x)=frac{pi}{4}+sum_{k=1}^{infty},frac{(-1)^{k-1}}{2^{frac{k}{2}},k},sinleft(frac{kpi}{4}right),(x-1)^k,.$$
for every $xinmathbb{C}$ such that $|x-1|<sqrt{2}$. In this way, it follows that
$$y^{(k)}(1)=begin{cases}frac{pi}{4}&text{if }k=0,,\
frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)&text{if }k=1,2,3,ldots,,
end{cases}$$
where $y(x):=text{arctan}(x)$.
However, if you really want to solve the recursion without the expansion above, then let $a_k:=dfrac{y^{(k)}(1)}{(k-1)!}$ for $k=1,2,3,ldots$. From
$$y^{(k+2)}(1)+(k+1),y^{(k+1)}(1)+frac{k(k+1)}{2},y^{(k)}(1)=0text{ for }k=1,2,3,ldots,,$$
we divide both sides by $(k+1)!$ to get
$$a_{k+2}+a_{k+1}+frac{1}{2},a_k=0text{ for }k=1,2,3,ldots,.$$
The characteristic polynomial of the recursion above is $lambda^2+lambda+dfrac{1}{2}$, whose roots are $dfrac{-1pmtext{i}}{2}$. Therefore, for $k=1,2,3,ldots$,
$$a_k=p,left(frac{-1+text{i}}{2}right)^k+q,left(frac{-1-text{i}}{2}right)^k$$
for some fixed $p,qinmathbb{C}$. Since $a_1=dfrac{1}{2}$ and $a_2=-dfrac{1}{2}$, we get $$p=+frac{text{i}}{2}text{ and }q=-frac{text{i}}{2},,$$
whence
$$y^{(k)}(1)=frac{left(frac{-1+text{i}}{2}right)^k-,left(frac{-1-text{i}}{2}right)^k}{2text{i}},(k-1)!=frac{(-1)^{k-1},(k-1)!}{2^{frac{k}{2}}},sinleft(frac{kpi}{4}right)$$
for $k=1,2,3,ldots$.
answered Nov 18 at 15:25
Batominovski
31.8k23189
31.8k23189
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003605%2fhow-to-solve-the-recursive-equation-yn2-n1yn1-tfracnn12%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown