How to show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$











up vote
3
down vote

favorite
1













Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$




Try



Using the facts:





  • $(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$


  • $Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$


Note :



$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$



But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.










share|cite|improve this question


















  • 2




    What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
    – Jack D'Aurizio
    Nov 21 at 2:21






  • 2




    what is your definition of $approx$??
    – Masacroso
    Nov 21 at 2:39















up vote
3
down vote

favorite
1













Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$




Try



Using the facts:





  • $(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$


  • $Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$


Note :



$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$



But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.










share|cite|improve this question


















  • 2




    What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
    – Jack D'Aurizio
    Nov 21 at 2:21






  • 2




    what is your definition of $approx$??
    – Masacroso
    Nov 21 at 2:39













up vote
3
down vote

favorite
1









up vote
3
down vote

favorite
1






1






Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$




Try



Using the facts:





  • $(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$


  • $Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$


Note :



$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$



But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.










share|cite|improve this question














Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$




Try



Using the facts:





  • $(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$


  • $Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$


Note :



$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$



But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.







approximation gamma-function






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 21 at 2:20









Moreblue

800216




800216








  • 2




    What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
    – Jack D'Aurizio
    Nov 21 at 2:21






  • 2




    what is your definition of $approx$??
    – Masacroso
    Nov 21 at 2:39














  • 2




    What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
    – Jack D'Aurizio
    Nov 21 at 2:21






  • 2




    what is your definition of $approx$??
    – Masacroso
    Nov 21 at 2:39








2




2




What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 at 2:21




What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 at 2:21




2




2




what is your definition of $approx$??
– Masacroso
Nov 21 at 2:39




what is your definition of $approx$??
– Masacroso
Nov 21 at 2:39










1 Answer
1






active

oldest

votes

















up vote
6
down vote



accepted










A possible approach:



$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
gives
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007166%2fhow-to-show-frac-gamman-1-2-gamman-2-approx-frac-sqrt2-sqrtn%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    6
    down vote



    accepted










    A possible approach:



    $$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
    gives
    $$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
    Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.






    share|cite|improve this answer



























      up vote
      6
      down vote



      accepted










      A possible approach:



      $$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
      gives
      $$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
      Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.






      share|cite|improve this answer

























        up vote
        6
        down vote



        accepted







        up vote
        6
        down vote



        accepted






        A possible approach:



        $$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
        gives
        $$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
        Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.






        share|cite|improve this answer














        A possible approach:



        $$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
        gives
        $$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
        Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 21 at 2:57

























        answered Nov 21 at 2:27









        Jack D'Aurizio

        284k33275654




        284k33275654






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007166%2fhow-to-show-frac-gamman-1-2-gamman-2-approx-frac-sqrt2-sqrtn%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei