How to show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$
up vote
3
down vote
favorite
Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$
Try
Using the facts:
$(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$
$Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$
Note :
$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$
But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.
approximation gamma-function
add a comment |
up vote
3
down vote
favorite
Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$
Try
Using the facts:
$(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$
$Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$
Note :
$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$
But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.
approximation gamma-function
2
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 at 2:21
2
what is your definition of $approx$??
– Masacroso
Nov 21 at 2:39
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$
Try
Using the facts:
$(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$
$Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$
Note :
$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$
But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.
approximation gamma-function
Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$
Try
Using the facts:
$(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$
$Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$
Note :
$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$
But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.
approximation gamma-function
approximation gamma-function
asked Nov 21 at 2:20
Moreblue
800216
800216
2
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 at 2:21
2
what is your definition of $approx$??
– Masacroso
Nov 21 at 2:39
add a comment |
2
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 at 2:21
2
what is your definition of $approx$??
– Masacroso
Nov 21 at 2:39
2
2
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 at 2:21
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 at 2:21
2
2
what is your definition of $approx$??
– Masacroso
Nov 21 at 2:39
what is your definition of $approx$??
– Masacroso
Nov 21 at 2:39
add a comment |
1 Answer
1
active
oldest
votes
up vote
6
down vote
accepted
A possible approach:
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
gives
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
6
down vote
accepted
A possible approach:
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
gives
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.
add a comment |
up vote
6
down vote
accepted
A possible approach:
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
gives
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.
add a comment |
up vote
6
down vote
accepted
up vote
6
down vote
accepted
A possible approach:
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
gives
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.
A possible approach:
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
gives
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.
edited Nov 21 at 2:57
answered Nov 21 at 2:27
Jack D'Aurizio
284k33275654
284k33275654
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007166%2fhow-to-show-frac-gamman-1-2-gamman-2-approx-frac-sqrt2-sqrtn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 at 2:21
2
what is your definition of $approx$??
– Masacroso
Nov 21 at 2:39