If the closed unit ball of Banach space has at least one extreme point, must the Banach space the be a dual...











up vote
3
down vote

favorite
1












Let $X$ be a Banach space.
By Banach-Alaoglu and Krein-Milman Theorems, one can show that if $X$ is a dual space, then $X$ must have at least one extreme point of the closed unit ball.



I am interested in its converse.
More precisely,




Question: Let $X$ be a Banach space.
If the closed unit ball of $X$ has at least one extreme point, must $X$ be a dual space?




I feel that the statement above is negative.
However, I could not produce a counterexample.



In fact, the only Banach spaces which I know that are not dual spaces are $c_0$ and $C_0(mathbb{R})$ (the latter set is the collection of all real-valued continuous function vanishing at infinity) because both sets have no extreme point.










share|cite|improve this question




















  • 3




    When you say that "$X$ has at least one extreme point" do you mean that the closed unit ball of $X$ has at least on extreme point?
    – Martin Sleziak
    yesterday










  • I have added the tag (extreme-points), since it seems to me a good fit to the question. There exists also (krein-milman-theorem) tag, but that one would probably be a stretch.
    – Martin Sleziak
    yesterday






  • 4




    This post on Mathematics site seems to be about the same question: Krein-Milman and dual spaces.
    – Martin Sleziak
    yesterday










  • @MartinSleziak Yes, I mean the closed unit ball of $X.$
    – Idonknow
    yesterday






  • 1




    @TarasBanakh: There are infinite compact $K$ for which $C(K)$ is a dual space: these are precisely the hyperstonean $K$, e.g., $betamathbb{N}$. (On the other hand there are non-dual $C(K)$ for which the unit ball is the norm-closed convex hull of its extreme points, e.g. $alphamathbb{N}$. These are precisely the totally disconected $K$.)
    – Dirk Werner
    yesterday















up vote
3
down vote

favorite
1












Let $X$ be a Banach space.
By Banach-Alaoglu and Krein-Milman Theorems, one can show that if $X$ is a dual space, then $X$ must have at least one extreme point of the closed unit ball.



I am interested in its converse.
More precisely,




Question: Let $X$ be a Banach space.
If the closed unit ball of $X$ has at least one extreme point, must $X$ be a dual space?




I feel that the statement above is negative.
However, I could not produce a counterexample.



In fact, the only Banach spaces which I know that are not dual spaces are $c_0$ and $C_0(mathbb{R})$ (the latter set is the collection of all real-valued continuous function vanishing at infinity) because both sets have no extreme point.










share|cite|improve this question




















  • 3




    When you say that "$X$ has at least one extreme point" do you mean that the closed unit ball of $X$ has at least on extreme point?
    – Martin Sleziak
    yesterday










  • I have added the tag (extreme-points), since it seems to me a good fit to the question. There exists also (krein-milman-theorem) tag, but that one would probably be a stretch.
    – Martin Sleziak
    yesterday






  • 4




    This post on Mathematics site seems to be about the same question: Krein-Milman and dual spaces.
    – Martin Sleziak
    yesterday










  • @MartinSleziak Yes, I mean the closed unit ball of $X.$
    – Idonknow
    yesterday






  • 1




    @TarasBanakh: There are infinite compact $K$ for which $C(K)$ is a dual space: these are precisely the hyperstonean $K$, e.g., $betamathbb{N}$. (On the other hand there are non-dual $C(K)$ for which the unit ball is the norm-closed convex hull of its extreme points, e.g. $alphamathbb{N}$. These are precisely the totally disconected $K$.)
    – Dirk Werner
    yesterday













up vote
3
down vote

favorite
1









up vote
3
down vote

favorite
1






1





Let $X$ be a Banach space.
By Banach-Alaoglu and Krein-Milman Theorems, one can show that if $X$ is a dual space, then $X$ must have at least one extreme point of the closed unit ball.



I am interested in its converse.
More precisely,




Question: Let $X$ be a Banach space.
If the closed unit ball of $X$ has at least one extreme point, must $X$ be a dual space?




I feel that the statement above is negative.
However, I could not produce a counterexample.



In fact, the only Banach spaces which I know that are not dual spaces are $c_0$ and $C_0(mathbb{R})$ (the latter set is the collection of all real-valued continuous function vanishing at infinity) because both sets have no extreme point.










share|cite|improve this question















Let $X$ be a Banach space.
By Banach-Alaoglu and Krein-Milman Theorems, one can show that if $X$ is a dual space, then $X$ must have at least one extreme point of the closed unit ball.



I am interested in its converse.
More precisely,




Question: Let $X$ be a Banach space.
If the closed unit ball of $X$ has at least one extreme point, must $X$ be a dual space?




I feel that the statement above is negative.
However, I could not produce a counterexample.



In fact, the only Banach spaces which I know that are not dual spaces are $c_0$ and $C_0(mathbb{R})$ (the latter set is the collection of all real-valued continuous function vanishing at infinity) because both sets have no extreme point.







fa.functional-analysis banach-spaces convexity duality extreme-points






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday

























asked yesterday









Idonknow

204312




204312








  • 3




    When you say that "$X$ has at least one extreme point" do you mean that the closed unit ball of $X$ has at least on extreme point?
    – Martin Sleziak
    yesterday










  • I have added the tag (extreme-points), since it seems to me a good fit to the question. There exists also (krein-milman-theorem) tag, but that one would probably be a stretch.
    – Martin Sleziak
    yesterday






  • 4




    This post on Mathematics site seems to be about the same question: Krein-Milman and dual spaces.
    – Martin Sleziak
    yesterday










  • @MartinSleziak Yes, I mean the closed unit ball of $X.$
    – Idonknow
    yesterday






  • 1




    @TarasBanakh: There are infinite compact $K$ for which $C(K)$ is a dual space: these are precisely the hyperstonean $K$, e.g., $betamathbb{N}$. (On the other hand there are non-dual $C(K)$ for which the unit ball is the norm-closed convex hull of its extreme points, e.g. $alphamathbb{N}$. These are precisely the totally disconected $K$.)
    – Dirk Werner
    yesterday














  • 3




    When you say that "$X$ has at least one extreme point" do you mean that the closed unit ball of $X$ has at least on extreme point?
    – Martin Sleziak
    yesterday










  • I have added the tag (extreme-points), since it seems to me a good fit to the question. There exists also (krein-milman-theorem) tag, but that one would probably be a stretch.
    – Martin Sleziak
    yesterday






  • 4




    This post on Mathematics site seems to be about the same question: Krein-Milman and dual spaces.
    – Martin Sleziak
    yesterday










  • @MartinSleziak Yes, I mean the closed unit ball of $X.$
    – Idonknow
    yesterday






  • 1




    @TarasBanakh: There are infinite compact $K$ for which $C(K)$ is a dual space: these are precisely the hyperstonean $K$, e.g., $betamathbb{N}$. (On the other hand there are non-dual $C(K)$ for which the unit ball is the norm-closed convex hull of its extreme points, e.g. $alphamathbb{N}$. These are precisely the totally disconected $K$.)
    – Dirk Werner
    yesterday








3




3




When you say that "$X$ has at least one extreme point" do you mean that the closed unit ball of $X$ has at least on extreme point?
– Martin Sleziak
yesterday




When you say that "$X$ has at least one extreme point" do you mean that the closed unit ball of $X$ has at least on extreme point?
– Martin Sleziak
yesterday












I have added the tag (extreme-points), since it seems to me a good fit to the question. There exists also (krein-milman-theorem) tag, but that one would probably be a stretch.
– Martin Sleziak
yesterday




I have added the tag (extreme-points), since it seems to me a good fit to the question. There exists also (krein-milman-theorem) tag, but that one would probably be a stretch.
– Martin Sleziak
yesterday




4




4




This post on Mathematics site seems to be about the same question: Krein-Milman and dual spaces.
– Martin Sleziak
yesterday




This post on Mathematics site seems to be about the same question: Krein-Milman and dual spaces.
– Martin Sleziak
yesterday












@MartinSleziak Yes, I mean the closed unit ball of $X.$
– Idonknow
yesterday




@MartinSleziak Yes, I mean the closed unit ball of $X.$
– Idonknow
yesterday




1




1




@TarasBanakh: There are infinite compact $K$ for which $C(K)$ is a dual space: these are precisely the hyperstonean $K$, e.g., $betamathbb{N}$. (On the other hand there are non-dual $C(K)$ for which the unit ball is the norm-closed convex hull of its extreme points, e.g. $alphamathbb{N}$. These are precisely the totally disconected $K$.)
– Dirk Werner
yesterday




@TarasBanakh: There are infinite compact $K$ for which $C(K)$ is a dual space: these are precisely the hyperstonean $K$, e.g., $betamathbb{N}$. (On the other hand there are non-dual $C(K)$ for which the unit ball is the norm-closed convex hull of its extreme points, e.g. $alphamathbb{N}$. These are precisely the totally disconected $K$.)
– Dirk Werner
yesterday










2 Answers
2






active

oldest

votes

















up vote
7
down vote













No. Let $X$ and $Y$ be Banach spaces, and set $Z=Xoplus Y$, with $||(x,y)||:=|x|+|y|$. Assume that $x$ is a extreme point of $X$ with $|x|=1$. Then $(x,0)$ becomes an extreme point of $Z$; indeed, if
$$(x,0)=frac12(a,y)+frac12(b,z)$$
for $(a,y),(b,z)$ in the unit ball of $Z$, we then have $a=x=b$, since $x$ is an extreme point, but then $1=|x|=|a|leq||(a,y)||leq 1$, so $y=0$, and analogously, $z=0$.



So, $L^2(mathbb R)oplus L^1(mathbb R)$, is not a dual space, but its unit ball has extreme points.






share|cite|improve this answer



















  • 1




    How can we prove that $L^2(mathbb R)oplus L^1(mathbb R)$ is not a dual space?
    – Idonknow
    yesterday






  • 1




    @Idonknow This is because, $Xoplus Y$ is dual iff both $X$ and $Y$ are dual.
    – Meisam Soleimani Malekan
    yesterday






  • 3




    @MeisamSoleimaniMalekan: I am not absolutely positive about your previous comment: Write $C[0,1]^*$ as $L_1[0,1] oplus_1 Y$ with $Y=$ singular measures w.r.t. the Lebesgue measure. So a dual can have a non-dual $ell_1$-direct summand. My argument: If $L_2oplus L_1$ were a dual, it would, being separable, have the RNP, and hence $L_1$ would have the RNP, which it doesn't.
    – Dirk Werner
    yesterday










  • @DirkWerner Thanks for the comment, you are right!
    – Meisam Soleimani Malekan
    yesterday


















up vote
7
down vote













Every separable Banach space $X$ can be equivalently renormed so that every point in the unit sphere is an extreme point: Take an injective bounded linear operator $T$ from $X$ into $ell_2$ and use $|x| := |x|_X + |Tx|_2$. Of course, there are many separable Banach spaces that are not isomorphic to a separable conjugate space, including (as Dirk pointed out) those that fail the Radon Nikodym property.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "504"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f316701%2fif-the-closed-unit-ball-of-banach-space-has-at-least-one-extreme-point-must-the%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    7
    down vote













    No. Let $X$ and $Y$ be Banach spaces, and set $Z=Xoplus Y$, with $||(x,y)||:=|x|+|y|$. Assume that $x$ is a extreme point of $X$ with $|x|=1$. Then $(x,0)$ becomes an extreme point of $Z$; indeed, if
    $$(x,0)=frac12(a,y)+frac12(b,z)$$
    for $(a,y),(b,z)$ in the unit ball of $Z$, we then have $a=x=b$, since $x$ is an extreme point, but then $1=|x|=|a|leq||(a,y)||leq 1$, so $y=0$, and analogously, $z=0$.



    So, $L^2(mathbb R)oplus L^1(mathbb R)$, is not a dual space, but its unit ball has extreme points.






    share|cite|improve this answer



















    • 1




      How can we prove that $L^2(mathbb R)oplus L^1(mathbb R)$ is not a dual space?
      – Idonknow
      yesterday






    • 1




      @Idonknow This is because, $Xoplus Y$ is dual iff both $X$ and $Y$ are dual.
      – Meisam Soleimani Malekan
      yesterday






    • 3




      @MeisamSoleimaniMalekan: I am not absolutely positive about your previous comment: Write $C[0,1]^*$ as $L_1[0,1] oplus_1 Y$ with $Y=$ singular measures w.r.t. the Lebesgue measure. So a dual can have a non-dual $ell_1$-direct summand. My argument: If $L_2oplus L_1$ were a dual, it would, being separable, have the RNP, and hence $L_1$ would have the RNP, which it doesn't.
      – Dirk Werner
      yesterday










    • @DirkWerner Thanks for the comment, you are right!
      – Meisam Soleimani Malekan
      yesterday















    up vote
    7
    down vote













    No. Let $X$ and $Y$ be Banach spaces, and set $Z=Xoplus Y$, with $||(x,y)||:=|x|+|y|$. Assume that $x$ is a extreme point of $X$ with $|x|=1$. Then $(x,0)$ becomes an extreme point of $Z$; indeed, if
    $$(x,0)=frac12(a,y)+frac12(b,z)$$
    for $(a,y),(b,z)$ in the unit ball of $Z$, we then have $a=x=b$, since $x$ is an extreme point, but then $1=|x|=|a|leq||(a,y)||leq 1$, so $y=0$, and analogously, $z=0$.



    So, $L^2(mathbb R)oplus L^1(mathbb R)$, is not a dual space, but its unit ball has extreme points.






    share|cite|improve this answer



















    • 1




      How can we prove that $L^2(mathbb R)oplus L^1(mathbb R)$ is not a dual space?
      – Idonknow
      yesterday






    • 1




      @Idonknow This is because, $Xoplus Y$ is dual iff both $X$ and $Y$ are dual.
      – Meisam Soleimani Malekan
      yesterday






    • 3




      @MeisamSoleimaniMalekan: I am not absolutely positive about your previous comment: Write $C[0,1]^*$ as $L_1[0,1] oplus_1 Y$ with $Y=$ singular measures w.r.t. the Lebesgue measure. So a dual can have a non-dual $ell_1$-direct summand. My argument: If $L_2oplus L_1$ were a dual, it would, being separable, have the RNP, and hence $L_1$ would have the RNP, which it doesn't.
      – Dirk Werner
      yesterday










    • @DirkWerner Thanks for the comment, you are right!
      – Meisam Soleimani Malekan
      yesterday













    up vote
    7
    down vote










    up vote
    7
    down vote









    No. Let $X$ and $Y$ be Banach spaces, and set $Z=Xoplus Y$, with $||(x,y)||:=|x|+|y|$. Assume that $x$ is a extreme point of $X$ with $|x|=1$. Then $(x,0)$ becomes an extreme point of $Z$; indeed, if
    $$(x,0)=frac12(a,y)+frac12(b,z)$$
    for $(a,y),(b,z)$ in the unit ball of $Z$, we then have $a=x=b$, since $x$ is an extreme point, but then $1=|x|=|a|leq||(a,y)||leq 1$, so $y=0$, and analogously, $z=0$.



    So, $L^2(mathbb R)oplus L^1(mathbb R)$, is not a dual space, but its unit ball has extreme points.






    share|cite|improve this answer














    No. Let $X$ and $Y$ be Banach spaces, and set $Z=Xoplus Y$, with $||(x,y)||:=|x|+|y|$. Assume that $x$ is a extreme point of $X$ with $|x|=1$. Then $(x,0)$ becomes an extreme point of $Z$; indeed, if
    $$(x,0)=frac12(a,y)+frac12(b,z)$$
    for $(a,y),(b,z)$ in the unit ball of $Z$, we then have $a=x=b$, since $x$ is an extreme point, but then $1=|x|=|a|leq||(a,y)||leq 1$, so $y=0$, and analogously, $z=0$.



    So, $L^2(mathbb R)oplus L^1(mathbb R)$, is not a dual space, but its unit ball has extreme points.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited yesterday

























    answered yesterday









    Meisam Soleimani Malekan

    1,1041311




    1,1041311








    • 1




      How can we prove that $L^2(mathbb R)oplus L^1(mathbb R)$ is not a dual space?
      – Idonknow
      yesterday






    • 1




      @Idonknow This is because, $Xoplus Y$ is dual iff both $X$ and $Y$ are dual.
      – Meisam Soleimani Malekan
      yesterday






    • 3




      @MeisamSoleimaniMalekan: I am not absolutely positive about your previous comment: Write $C[0,1]^*$ as $L_1[0,1] oplus_1 Y$ with $Y=$ singular measures w.r.t. the Lebesgue measure. So a dual can have a non-dual $ell_1$-direct summand. My argument: If $L_2oplus L_1$ were a dual, it would, being separable, have the RNP, and hence $L_1$ would have the RNP, which it doesn't.
      – Dirk Werner
      yesterday










    • @DirkWerner Thanks for the comment, you are right!
      – Meisam Soleimani Malekan
      yesterday














    • 1




      How can we prove that $L^2(mathbb R)oplus L^1(mathbb R)$ is not a dual space?
      – Idonknow
      yesterday






    • 1




      @Idonknow This is because, $Xoplus Y$ is dual iff both $X$ and $Y$ are dual.
      – Meisam Soleimani Malekan
      yesterday






    • 3




      @MeisamSoleimaniMalekan: I am not absolutely positive about your previous comment: Write $C[0,1]^*$ as $L_1[0,1] oplus_1 Y$ with $Y=$ singular measures w.r.t. the Lebesgue measure. So a dual can have a non-dual $ell_1$-direct summand. My argument: If $L_2oplus L_1$ were a dual, it would, being separable, have the RNP, and hence $L_1$ would have the RNP, which it doesn't.
      – Dirk Werner
      yesterday










    • @DirkWerner Thanks for the comment, you are right!
      – Meisam Soleimani Malekan
      yesterday








    1




    1




    How can we prove that $L^2(mathbb R)oplus L^1(mathbb R)$ is not a dual space?
    – Idonknow
    yesterday




    How can we prove that $L^2(mathbb R)oplus L^1(mathbb R)$ is not a dual space?
    – Idonknow
    yesterday




    1




    1




    @Idonknow This is because, $Xoplus Y$ is dual iff both $X$ and $Y$ are dual.
    – Meisam Soleimani Malekan
    yesterday




    @Idonknow This is because, $Xoplus Y$ is dual iff both $X$ and $Y$ are dual.
    – Meisam Soleimani Malekan
    yesterday




    3




    3




    @MeisamSoleimaniMalekan: I am not absolutely positive about your previous comment: Write $C[0,1]^*$ as $L_1[0,1] oplus_1 Y$ with $Y=$ singular measures w.r.t. the Lebesgue measure. So a dual can have a non-dual $ell_1$-direct summand. My argument: If $L_2oplus L_1$ were a dual, it would, being separable, have the RNP, and hence $L_1$ would have the RNP, which it doesn't.
    – Dirk Werner
    yesterday




    @MeisamSoleimaniMalekan: I am not absolutely positive about your previous comment: Write $C[0,1]^*$ as $L_1[0,1] oplus_1 Y$ with $Y=$ singular measures w.r.t. the Lebesgue measure. So a dual can have a non-dual $ell_1$-direct summand. My argument: If $L_2oplus L_1$ were a dual, it would, being separable, have the RNP, and hence $L_1$ would have the RNP, which it doesn't.
    – Dirk Werner
    yesterday












    @DirkWerner Thanks for the comment, you are right!
    – Meisam Soleimani Malekan
    yesterday




    @DirkWerner Thanks for the comment, you are right!
    – Meisam Soleimani Malekan
    yesterday










    up vote
    7
    down vote













    Every separable Banach space $X$ can be equivalently renormed so that every point in the unit sphere is an extreme point: Take an injective bounded linear operator $T$ from $X$ into $ell_2$ and use $|x| := |x|_X + |Tx|_2$. Of course, there are many separable Banach spaces that are not isomorphic to a separable conjugate space, including (as Dirk pointed out) those that fail the Radon Nikodym property.






    share|cite|improve this answer

























      up vote
      7
      down vote













      Every separable Banach space $X$ can be equivalently renormed so that every point in the unit sphere is an extreme point: Take an injective bounded linear operator $T$ from $X$ into $ell_2$ and use $|x| := |x|_X + |Tx|_2$. Of course, there are many separable Banach spaces that are not isomorphic to a separable conjugate space, including (as Dirk pointed out) those that fail the Radon Nikodym property.






      share|cite|improve this answer























        up vote
        7
        down vote










        up vote
        7
        down vote









        Every separable Banach space $X$ can be equivalently renormed so that every point in the unit sphere is an extreme point: Take an injective bounded linear operator $T$ from $X$ into $ell_2$ and use $|x| := |x|_X + |Tx|_2$. Of course, there are many separable Banach spaces that are not isomorphic to a separable conjugate space, including (as Dirk pointed out) those that fail the Radon Nikodym property.






        share|cite|improve this answer












        Every separable Banach space $X$ can be equivalently renormed so that every point in the unit sphere is an extreme point: Take an injective bounded linear operator $T$ from $X$ into $ell_2$ and use $|x| := |x|_X + |Tx|_2$. Of course, there are many separable Banach spaces that are not isomorphic to a separable conjugate space, including (as Dirk pointed out) those that fail the Radon Nikodym property.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered yesterday









        Bill Johnson

        24.1k367116




        24.1k367116






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f316701%2fif-the-closed-unit-ball-of-banach-space-has-at-least-one-extreme-point-must-the%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Quarter-circle Tiles

            build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

            Mont Emei