Integral involving the log gamma function
I have used the Kummer representation series of loggamma function but does not look promissing to tackle this integral. Any idea to calculate this integral in closed-form ?
$$int_{0}^{1}ln(x)lnGamma(x)dx$$
definite-integrals fourier-series gamma-function
add a comment |
I have used the Kummer representation series of loggamma function but does not look promissing to tackle this integral. Any idea to calculate this integral in closed-form ?
$$int_{0}^{1}ln(x)lnGamma(x)dx$$
definite-integrals fourier-series gamma-function
add a comment |
I have used the Kummer representation series of loggamma function but does not look promissing to tackle this integral. Any idea to calculate this integral in closed-form ?
$$int_{0}^{1}ln(x)lnGamma(x)dx$$
definite-integrals fourier-series gamma-function
I have used the Kummer representation series of loggamma function but does not look promissing to tackle this integral. Any idea to calculate this integral in closed-form ?
$$int_{0}^{1}ln(x)lnGamma(x)dx$$
definite-integrals fourier-series gamma-function
definite-integrals fourier-series gamma-function
asked Nov 25 at 19:02
Kays Tomy
1997
1997
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
I am quite skeptical about a possible closed form of this integral.
For an approximation, I should use the expansion
$$log (Gamma (x))=-log (x)-gamma x+frac{pi ^2 x^2}{12}+frac{x^3 psi ^{(2)}(1)}{6}+frac{pi ^4
x^4}{360}+frac{x^5 psi ^{(4)}(1)}{120}+frac{pi ^6
x^6}{5670}+Oleft(x^7right)$$ and integrate termwise to end with
$$int_0^1 log(x)log (Gamma (x))=-2+frac{gamma }{4}-frac{pi ^2}{108}-frac{pi ^4}{9000}-frac{pi
^6}{277830}-frac{psi ^{(2)}(1)}{96}-frac{psi ^{(4)}(1)}{4320}$$ which is $approx -1.93056$ while numerical integration leads to $approx -1.92922$.
Expanding $log (Gamma (x))$ to $Oleft(x^{10}right)$ would lead to
$$int_0^1 log(x)log (Gamma (x))=-2+frac{gamma }{4}-frac{pi ^2}{108}-frac{pi ^4}{9000}-frac{pi
^6}{277830}-frac{pi ^8}{6123600}-frac{pi ^{10}}{113201550}-frac{psi
^{(2)}(1)}{96}-frac{psi ^{(4)}(1)}{4320}-frac{psi
^{(6)}(1)}{322560}-frac{psi ^{(8)}(1)}{36288000}$$ which is $approx -1.92922$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013236%2fintegral-involving-the-log-gamma-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I am quite skeptical about a possible closed form of this integral.
For an approximation, I should use the expansion
$$log (Gamma (x))=-log (x)-gamma x+frac{pi ^2 x^2}{12}+frac{x^3 psi ^{(2)}(1)}{6}+frac{pi ^4
x^4}{360}+frac{x^5 psi ^{(4)}(1)}{120}+frac{pi ^6
x^6}{5670}+Oleft(x^7right)$$ and integrate termwise to end with
$$int_0^1 log(x)log (Gamma (x))=-2+frac{gamma }{4}-frac{pi ^2}{108}-frac{pi ^4}{9000}-frac{pi
^6}{277830}-frac{psi ^{(2)}(1)}{96}-frac{psi ^{(4)}(1)}{4320}$$ which is $approx -1.93056$ while numerical integration leads to $approx -1.92922$.
Expanding $log (Gamma (x))$ to $Oleft(x^{10}right)$ would lead to
$$int_0^1 log(x)log (Gamma (x))=-2+frac{gamma }{4}-frac{pi ^2}{108}-frac{pi ^4}{9000}-frac{pi
^6}{277830}-frac{pi ^8}{6123600}-frac{pi ^{10}}{113201550}-frac{psi
^{(2)}(1)}{96}-frac{psi ^{(4)}(1)}{4320}-frac{psi
^{(6)}(1)}{322560}-frac{psi ^{(8)}(1)}{36288000}$$ which is $approx -1.92922$.
add a comment |
I am quite skeptical about a possible closed form of this integral.
For an approximation, I should use the expansion
$$log (Gamma (x))=-log (x)-gamma x+frac{pi ^2 x^2}{12}+frac{x^3 psi ^{(2)}(1)}{6}+frac{pi ^4
x^4}{360}+frac{x^5 psi ^{(4)}(1)}{120}+frac{pi ^6
x^6}{5670}+Oleft(x^7right)$$ and integrate termwise to end with
$$int_0^1 log(x)log (Gamma (x))=-2+frac{gamma }{4}-frac{pi ^2}{108}-frac{pi ^4}{9000}-frac{pi
^6}{277830}-frac{psi ^{(2)}(1)}{96}-frac{psi ^{(4)}(1)}{4320}$$ which is $approx -1.93056$ while numerical integration leads to $approx -1.92922$.
Expanding $log (Gamma (x))$ to $Oleft(x^{10}right)$ would lead to
$$int_0^1 log(x)log (Gamma (x))=-2+frac{gamma }{4}-frac{pi ^2}{108}-frac{pi ^4}{9000}-frac{pi
^6}{277830}-frac{pi ^8}{6123600}-frac{pi ^{10}}{113201550}-frac{psi
^{(2)}(1)}{96}-frac{psi ^{(4)}(1)}{4320}-frac{psi
^{(6)}(1)}{322560}-frac{psi ^{(8)}(1)}{36288000}$$ which is $approx -1.92922$.
add a comment |
I am quite skeptical about a possible closed form of this integral.
For an approximation, I should use the expansion
$$log (Gamma (x))=-log (x)-gamma x+frac{pi ^2 x^2}{12}+frac{x^3 psi ^{(2)}(1)}{6}+frac{pi ^4
x^4}{360}+frac{x^5 psi ^{(4)}(1)}{120}+frac{pi ^6
x^6}{5670}+Oleft(x^7right)$$ and integrate termwise to end with
$$int_0^1 log(x)log (Gamma (x))=-2+frac{gamma }{4}-frac{pi ^2}{108}-frac{pi ^4}{9000}-frac{pi
^6}{277830}-frac{psi ^{(2)}(1)}{96}-frac{psi ^{(4)}(1)}{4320}$$ which is $approx -1.93056$ while numerical integration leads to $approx -1.92922$.
Expanding $log (Gamma (x))$ to $Oleft(x^{10}right)$ would lead to
$$int_0^1 log(x)log (Gamma (x))=-2+frac{gamma }{4}-frac{pi ^2}{108}-frac{pi ^4}{9000}-frac{pi
^6}{277830}-frac{pi ^8}{6123600}-frac{pi ^{10}}{113201550}-frac{psi
^{(2)}(1)}{96}-frac{psi ^{(4)}(1)}{4320}-frac{psi
^{(6)}(1)}{322560}-frac{psi ^{(8)}(1)}{36288000}$$ which is $approx -1.92922$.
I am quite skeptical about a possible closed form of this integral.
For an approximation, I should use the expansion
$$log (Gamma (x))=-log (x)-gamma x+frac{pi ^2 x^2}{12}+frac{x^3 psi ^{(2)}(1)}{6}+frac{pi ^4
x^4}{360}+frac{x^5 psi ^{(4)}(1)}{120}+frac{pi ^6
x^6}{5670}+Oleft(x^7right)$$ and integrate termwise to end with
$$int_0^1 log(x)log (Gamma (x))=-2+frac{gamma }{4}-frac{pi ^2}{108}-frac{pi ^4}{9000}-frac{pi
^6}{277830}-frac{psi ^{(2)}(1)}{96}-frac{psi ^{(4)}(1)}{4320}$$ which is $approx -1.93056$ while numerical integration leads to $approx -1.92922$.
Expanding $log (Gamma (x))$ to $Oleft(x^{10}right)$ would lead to
$$int_0^1 log(x)log (Gamma (x))=-2+frac{gamma }{4}-frac{pi ^2}{108}-frac{pi ^4}{9000}-frac{pi
^6}{277830}-frac{pi ^8}{6123600}-frac{pi ^{10}}{113201550}-frac{psi
^{(2)}(1)}{96}-frac{psi ^{(4)}(1)}{4320}-frac{psi
^{(6)}(1)}{322560}-frac{psi ^{(8)}(1)}{36288000}$$ which is $approx -1.92922$.
answered Nov 26 at 6:24
Claude Leibovici
118k1157132
118k1157132
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013236%2fintegral-involving-the-log-gamma-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown